Arduino Cookbook


Michael Margolis - 2010
    This simple microcontroller board lets artists and designers build a variety of amazing objects and prototypes that interact with the physical world. With this cookbook you can dive right in and experiment with more than a hundred tips and techniques, no matter what your skill level is.The recipes in this book provide solutions for most common problems and questions Arduino users have, including everything from programming fundamentals to working with sensors, motors, lights, and sound, or communicating over wired and wireless networks. You'll find the examples and advice you need to begin, expand, and enhance your projects right away.Get to know the Arduino development environmentUnderstand the core elements of the Arduino programming languageUse common output devices for light, motion, and soundInteract with almost any device that has a remote controlLearn techniques for handling time delays and time measurementUse simple ways to transfer digital information from sensors to the Arduino deviceCreate complex projects that incorporate shields and external modulesUse and modify existing Arduino libraries, and learn how to create your own

The C# Programming Yellow Book


Rob Miles - 2010
    With jokes, puns, and a rigorous problem solving based approach. You can download all the code samples used in the book from here: http://www.robmiles.com/s/Yellow-Book...

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Linux in a Nutshell


Ellen Siever - 1999
    Simultaneously becoming more user friendly and more powerful as a back-end system, Linux has achieved new plateaus: the newer filesystems have solidified, new commands and tools have appeared and become standard, and the desktop--including new desktop environments--have proved to be viable, stable, and readily accessible to even those who don't consider themselves computer gurus. Whether you're using Linux for personal software projects, for a small office or home office (often termed the SOHO environment), to provide services to a small group of colleagues, or to administer a site responsible for millions of email and web connections each day, you need quick access to information on a wide range of tools. This book covers all aspects of administering and making effective use of Linux systems. Among its topics are booting, package management, and revision control. But foremost in Linux in a Nutshell are the utilities and commands that make Linux one of the most powerful and flexible systems available.Now in its fifth edition, Linux in a Nutshell brings users up-to-date with the current state of Linux. Considered by many to be the most complete and authoritative command reference for Linux available, the book covers all substantial user, programming, administration, and networking commands for the most common Linux distributions.Comprehensive but concise, the fifth edition has been updated to cover new features of major Linux distributions. Configuration information for the rapidly growing commercial network services and community update services is one of the subjects covered for the first time.But that's just the beginning. The book covers editors, shells, and LILO and GRUB boot options. There's also coverage of Apache, Samba, Postfix, sendmail, CVS, Subversion, Emacs, vi, sed, gawk, and much more. Everything that system administrators, developers, and power users need to know about Linux is referenced here, and they will turn to this book again and again.

Windows Internals: Covering Windows Server 2008 and Windows Vista (Pro-Developer)


Mark E. Russinovich - 2008
    Fully updated for Windows Server® 2008 and Windows Vista®, this classic guide delivers key architectural insights on system design, debugging, performance, and support—along with hands-on experiments to experience Windows internal behavior firsthand. Delve inside Windows architecture and internals: Understand how the core system and management mechanisms work—from the object manager to services to the registry Explore internal system data structures using tools like the kernel debugger Grasp the scheduler's priority and CPU placement algorithms Go inside the Windows security model to see how it authorizes access to data Understand how Windows manages physical and virtual memory Tour the Windows networking stack from top to bottom—including APIs, protocol drivers, and network adapter drivers Troubleshoot file-system access problems and system boot problems Learn how to analyze crashes

LISP in Small Pieces


Christian Queinnec - 1996
    It describes 11 interpreters and 2 compilers, including very recent techniques of interpretation and compilation. The book is in two parts. The first starts from a simple evaluation function and enriches it with multiple name spaces, continuations and side-effects with commented variants, while at the same time the language used to define these features is reduced to a simple lambda-calculus. Denotational semantics is then naturally introduced. The second part focuses more on implementation techniques and discusses precompilation for fast interpretation: threaded code or bytecode; compilation towards C. Some extensions are also described such as dynamic evaluation, reflection, macros and objects. This will become the new standard reference for people wanting to know more about the Lisp family of languages: how they work, how they are implemented, what their variants are and why such variants exist. The full code is supplied (and also available over the Net). A large bibliography is given as well as a considerable number of exercises. Thus it may also be used by students to accompany second courses on Lisp or Scheme.

Mindstorms: Children, Computers, And Powerful Ideas


Seymour Papert - 1980
    We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers.

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Cloud Native Devops with Kubernetes: Building, Deploying, and Scaling Modern Applications in the Cloud


John Arundel - 2019
    In this friendly, pragmatic book, cloud experts John Arundel and Justin Domingus show you what Kubernetes can do--and what you can do with it.You'll learn all about the Kubernetes ecosystem, and use battle-tested solutions to everyday problems. You'll build, step by step, an example cloud native application and its supporting infrastructure, along with a development environment and continuous deployment pipeline that you can use for your own applications.Understand containers and Kubernetes from first principles; no experience necessaryRun your own clusters or choose a managed Kubernetes service from Amazon, Google, and othersUse Kubernetes to manage resource usage and the container lifecycleOptimize clusters for cost, performance, resilience, capacity, and scalabilityLearn the best tools for developing, testing, and deploying your applicationsApply the latest industry practices for security, observability, and monitoringAdopt DevOps principles to help make your development teams lean, fast, and effective

Algorithms


Robert Sedgewick - 1983
    This book surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use.The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts.The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants.Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Jenkins: The Definitive Guide


John Ferguson Smart - 2011
    This complete guide shows you how to automate your build, integration, release, and deployment processes with Jenkins—and demonstrates how CI can save you time, money, and many headaches. Ideal for developers, software architects, and project managers, Jenkins: The Definitive Guide is both a CI tutorial and a comprehensive Jenkins reference. Through its wealth of best practices and real-world tips, you'll discover how easy it is to set up a CI service with Jenkins. Learn how to install, configure, and secure your Jenkins server Organize and monitor general-purpose build jobs Integrate automated tests to verify builds, and set up code quality reporting Establish effective team notification strategies and techniques Configure build pipelines, parameterized jobs, matrix builds, and other advanced jobs Manage a farm of Jenkins servers to run distributed builds Implement automated deployment and continuous delivery

Data Mining: Practical Machine Learning Tools and Techniques


Ian H. Witten - 1999
    This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915            0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)

AWS Lambda: A Guide to Serverless Microservices


Matthew Fuller - 2016
    Lambda enables users to develop code that executes in response to events - API calls, file uploads, schedules, etc - and upload it without worrying about managing traditional server metrics such as disk space, memory, or CPU usage. With its "per execution" cost model, Lambda can enable organizations to save hundreds or thousands of dollars on computing costs. With in-depth walkthroughs, large screenshots, and complete code samples, the reader is guided through the step-by-step process of creating new functions, responding to infrastructure events, developing API backends, executing code at specified intervals, and much more. Introduction to AWS Computing Evolution of the Computing Workload Lambda Background The Internals The Basics Functions Languages Resource Allocation Getting Set Up Hello World Uploading the Function Working with Events AWS Events Custom Events The Context Object Properties Methods Roles and Permissions Policies Trust Relationships Console Popups Cross Account Access Dependencies and Resources Node Modules OS Dependencies OS Resources OS Commands Logging Searching Logs Testing Your Function Lambda Console Tests Third-Party Testing Libraries Simulating Context Hello S3 Object The Bucket The Role The Code The Event The Trigger Testing When Lambda Isn’t the Answer Host Access Fine-Tuned Configuration Security Long-Running Tasks Where Lambda Excels AWS Event-Driven Tasks Scheduled Events (Cron) Offloading Heavy Processing API Endpoints Infrequently Used Services Real-World Use Cases S3 Image Processing Shutting Down Untagged Instances Triggering CodeDeploy with New S3 Uploads Processing Inbound Email Enforcing Security Policies Detecting Expiring Certificates Utilizing the AWS API Execution Environment The Code Pipeline Cold vs. Hot Execution What is Saved in Memory Scaling and Container Reuse From Development to Deployment Application Design Development Patterns Testing Deployment Monitoring Versioning and Aliasing Costs Short Executions Long-Running Processes High-Memory Applications Free Tier Calculating Pricing CloudFormation Reusable Template with Minimum Permissions Cross Account Access CloudWatch Alerts AWS API Gateway API Gateway Event Creating the Lambda Function Creating a New API, Resource, and Method Initial Configuration Mapping Templates Adding a Query String Using HTTP Request Information Within Lambda Deploying the API Additional Use Cases Lambda Competitors Iron.io StackHut WebTask.io Existing Cloud Providers The Future of Lambda More Resources Conclusion

High Performance Browser Networking


Ilya Grigorik - 2013
    By understanding what the browser can and cannot do, you’ll be able to make better design decisions and deliver faster web applications to your users.Author Ilya Grigorik—a developer advocate and web performance engineer at Google—starts with the building blocks of TCP and UDP, and then dives into newer technologies such as HTTP 2.0, WebSockets, and WebRTC. This book explains the benefits of these technologies and helps you determine which ones to use for your next application.- Learn how TCP affects the performance of HTTP- Understand why mobile networks are slower than wired networks- Use best practices to address performance bottlenecks in HTTP- Discover how HTTP 2.0 (based on SPDY) will improve networking- Learn how to use Server Sent Events (SSE) for push updates, and WebSockets for XMPP chat- Explore WebRTC for browser-to-browser applications such as P2P video chat- Examine the architecture of a simple app that uses HTTP 2.0, SSE, WebSockets, and WebRTC