Book picks similar to
Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals by Gerd Baumann
physics
mathematica
electromagnetism
programming
The New Quantum Universe
Tony Hey - 2003
Quantum paradoxes and the eventful life of Schroedinger's Cat are explained, along with the Many Universe explanation of quantum measurement in this newly revised edition. Updated throughout, the book also looks ahead to the nanotechnology revolution and describes quantum cryptography, computing and teleportation. Including an account of quantum mechanics and science fiction, this accessible book is geared to the general reader. Anthony Hey teaches at the University of Southampton, UK, and is the co-author of several books, including two with Patrick Walters, The Quantum Universe (Cambridge, 1987), and Einstein's Mirror (Cambridge, 1997). Patrick Walters is a Lecturer in Continuing Education at the University of Wales at Swansea. He co-ordinates the Physical Science Programme in DACE which includes the Astronomy Programme. His research interests include science education, and he also writes non-technical books on science for the general reader and beginning undergraduates. First Edition Pb (1987): 0-521-31845-9
God's Equation: Einstein, Relativity, and the Expanding Universe
Amir D. Aczel - 1999
Amir Aczel, critically acclaimed author of Fermat's Last Theorem, takes us into the heart of science's greatest mystery. In January 1998, astronomers found evidence that the cosmos is expanding at an ever-increasing rate. The way we perceive the universe was changed forever. The most compelling theory cosmologists could find to explain this phenomenon was Einstein's cosmological constant, a theory he conceived--and rejected---over eighty years ago. Drawing on newly discovered letters of Einstein--many translated here for the first time--years of research, and interviews with prominent mathematicians, cosmologists, physicists, and astronomers, Aczel takes us on a fascinating journey into "the strange geometry of space-time," and into the mind of a genius. Here the unthinkable becomes real: an infinite, ever-expanding, ever-accelerating universe whose only absolute is the speed of light. Awesome in scope, thrilling in detail, God's Equation is storytelling at its finest.
Teach Yourself Electricity and Electronics (Teach Yourself)
Stan Gibilisco - 1993
Targeted at the novice market, this self-instruction guide to electronics and electricity has been fully updated to include the latest emerging technologies, including wireless communications, computers and the Internet.
Flow
Philip Ball - 2008
It is the complex dynamics of flow that structures our atmosphere, land, and oceans.Part of a trilogy of books exploring the science of patterns in nature by acclaimed science writer Philip Ball, this volume explores the elusive rules that govern flow - the science of chaotic behavior.
What We Cannot Know: Explorations at the Edge of Knowledge
Marcus du Sautoy - 2016
But are there limits to what we can discover about our physical universe?In this very personal journey to the edges of knowledge, Marcus du Sautoy investigates how leading experts in fields from quantum physics and cosmology, to sensory perception and neuroscience, have articulated the current lie of the land. In doing so, he travels to the very boundaries of understanding, questioning contradictory stories and consulting cutting edge data.Is it possible that we will one day know everything? Or are there fields of research that will always lie beyond the bounds of human comprehension? And if so, how do we cope with living in a universe where there are things that will forever transcend our understanding?In What We Cannot Know, Marcus du Sautoy leads us on a thought-provoking expedition to the furthest reaches of modern science. Prepare to be taken to the edge of knowledge to find out if there’s anything we truly cannot know.
Equations of Eternity: Speculations on Consciousness, Meaning, and the Mathematical Rules That Orchestrate the Cosmos
David Darling - 1993
However, it is one of the basic principles of quantum theory, the most widely accepted explanation of the subatomic world - and one of the fascinating subjects dealt with in Equations of Eternity.
The Computer and the Brain
John von Neumann - 1958
This work represents the views of a mathematician on the analogies between computing machines and the living human brain.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.
Knocking on Heaven's Door: How Physics and Scientific Thinking Illuminate the Universe and the Modern World
Lisa Randall - 2011
Featuring fascinating insights into our scientific future born from the author’s provocative conversations with Nate Silver, David Chang, and Scott Derrickson, Knocking on Heaven’s Door is eminently readable, one of the most important popular science books of this or any year. It is a necessary volume for all who admire the work of Stephen Hawking, Michio Kaku, Brian Greene, Simon Singh, and Carl Sagan; for anyone curious about the workings and aims of the Large Hadron Collider, the biggest and most expensive machine ever built by mankind; for those who firmly believe in the importance of science and rational thought; and for anyone interested in how the Universe began…and how it might ultimately end.
Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe
Evalyn Gates - 2009
Dark matter. These strange and invisible substances don't just sound mysterious: their unexpected appearance in the cosmic census is upending long-held notions about the nature of the Universe. Astronomers have long known that the Universe is expanding, but everything they could see indicated that gravity should be slowing this spread. Instead, it appears that the Universe is accelerating its expansion and that something stronger than gravity--dark energy--is at work. In Einstein's Telescope Evalyn Gates, a University of Chicago astrophysicist, transports us to the edge of contemporary science to explore the revolutionary tool that unlocks the secrets of these little-understood cosmic constituents. Based on Einstein's theory of general relativity, gravitational lensing, or "Einstein's Telescope," is enabling new discoveries that are taking us toward the next revolution in scientific thinking--one that may change forever our notions of where the Universe came from and where it is going.
Introduction to Graph Theory
Richard J. Trudeau - 1994
This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.
Strength of Materials, Part 1 and Part 2
Stephen P. Timoshenko - 1983
1: Elementary Theory and Problems contains the essential material that is usually covered in required courses of strength of materials in our engineering schools. Strength of Materials - Part. 2: Advanced Theory and Problems contains the later developments that are of practical importance in the fields of strength of materials, and theory of elasticity. Complete derivations of problems of practical interest are given in most cases. The books are illustrated with a number of problems to which solutions are presented. In many cases, the problems are chosen so as to widen the field covered by the text and to illustrate the application of the theory in the solution of design problems.
Cybernetics: or the Control and Communication in the Animal and the Machine
Norbert Wiener - 1948
It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review
Hacking Electronics: An Illustrated DIY Guide for Makers and Hobbyists: An Illustrated DIY Guide for Makers and Hobbyists
Simon Monk - 2012
Packed with full-color illustrations, photos, and diagrams, Hacking Electronics teaches by doing--each topic features fun, easy-to-follow projects. Discover how to hack sensors, accelerometers, remote controllers, ultrasonic rangefinders, motors, stereo equipment, microphones, and FM transmitters. The final chapter contains useful information on getting the most out of cheap or free bench and software tools. Safely solder, join wires, and connect switches Identify components and read schematic diagrams Understand the how and why of electronics theory Work with transistors, LEDs, and laser diode modules Power your devices with a/c supplies, batteries, or solar panels Get up and running on Arduino boards and pre-made modules Use sensors to detect everything from noxious gas to acceleration Build and modify audio amps, microphones, and transmitters Fix gadgets and scavenge useful parts from dead equipment