Book picks similar to
Applicative High Order Programming by Steve Sokolowski
programming
lisp
cs
fogus-lisp-books
Ejb 3 in Action
Debu Panda - 2007
This book builds on the contributions and strengths of seminal technologies like Spring, Hibernate, and TopLink.EJB 3 is the most important innovation introduced in Java EE 5.0. EJB 3 simplifies enterprise development, abandoning the complex EJB 2.x model in favor of a lightweight POJO framework. The new API represents a fresh perspective on EJB without sacrificing the mission of enabling business application developers to create robust, scalable, standards-based solutions.EJB 3 in Action is a fast-paced tutorial, geared toward helping you learn EJB 3 and the Java Persistence API quickly and easily. For newcomers to EJB, this book provides a solid foundation in EJB. For the developer moving to EJB 3 from EJB 2, this book addresses the changes both in the EJB API and in the way the developer should approach EJB and persistence.
Clojure for the Brave and True
Daniel Higginbotham - 2015
At long last you'll be united with the programming language you've been longing for: Clojure!As a Lisp-style functional programming language, Clojure lets you write robust and elegant code, and because it runs on the Java Virtual Machine, you can take advantage of the vast Java ecosystem. Clojure for the Brave and True offers a "dessert-first" approach: you'll start playing with real programs immediately, as you steadily acclimate to the abstract but powerful features of Lisp and functional programming. Inside you'll find an offbeat, practical guide to Clojure, filled with quirky sample programs that catch cheese thieves and track glittery vampires.Learn how to: Wield Clojure's core functions Use Emacs for Clojure development Write macros to modify Clojure itself Use Clojure's tools to simplify concurrency and parallel programmingClojure for the Brave and True assumes no prior experience with Clojure, the Java Virtual Machine, or functional programming. Are you ready, brave reader, to meet your true destiny? Grab your best pair of parentheses—you're about to embark on an epic journey into the world of Clojure!
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
DevOps Troubleshooting: Linux Server Best Practices
Kyle Rankin - 2012
It has saved me hours in troubleshooting complicated operations problems." -Trotter Cashion, cofounder, Mashion DevOps can help developers, QAs, and admins work together to solve Linux server problems far more rapidly, significantly improving IT performance, availability, and efficiency. To gain these benefits, however, team members need common troubleshooting skills and practices. In
DevOps Troubleshooting: Linux Server Best Practices
, award-winning Linux expert Kyle Rankin brings together all the standardized, repeatable techniques your team needs to stop finger-pointing, collaborate effectively, and quickly solve virtually any Linux server problem. Rankin walks you through using DevOps techniques to troubleshoot everything from boot failures and corrupt disks to lost email and downed websites. You'll master indispensable skills for diagnosing high-load systems and network problems in production environments. Rankin shows how to Master DevOps' approach to troubleshooting and proven Linux server problem-solving principles Diagnose slow servers and applications by identifying CPU, RAM, and Disk I/O bottlenecks Understand healthy boots, so you can identify failure points and fix them Solve full or corrupt disk issues that prevent disk writes Track down the sources of network problems Troubleshoot DNS, email, and other network services Isolate and diagnose Apache and Nginx Web server failures and slowdowns Solve problems with MySQL and Postgres database servers and queries Identify hardware failures-even notoriously elusive intermittent failures
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Introduction to Machine Learning
Ethem Alpaydin - 2004
Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. "Introduction to Machine Learning" is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.
Cloud Architecture Patterns: Using Microsoft Azure
Bill Wilder - 2012
You’ll learn how each of these platform-agnostic patterns work, when they might be useful in the cloud, and what impact they’ll have on your application architecture. You’ll also see an example of each pattern applied to an application built with Windows Azure.The patterns are organized into four major topics, such as scalability and handling failure, and primer chapters provide background on each topic. With the information in this book, you’ll be able to make informed decisions for designing effective cloud-native applications that maximize the value of cloud services, while also paying attention to user experience and operational efficiency.Learn about architectural patterns for:Scalability. Discover the advantages of horizontal scaling. Patterns covered include Horizontally Scaling Compute, Queue-Centric Workflow, and Auto-Scaling.Big data. Learn how to handle large amounts of data across a distributed system. Eventual consistency is explained, along with the MapReduce and Database Sharding patterns.Handling failure. Understand how multitenant cloud services and commodity hardware influence your applications. Patterns covered include Busy Signal and Node Failure.Distributed users. Learn how to overcome delays due to network latency when building applications for a geographically distributed user base. Patterns covered include Colocation, Valet Key, CDN, and Multi-Site Deployment.
The Problem with Software: Why Smart Engineers Write Bad Code
Adam Barr - 2018
As the size and complexity of commercial software have grown, the gap between academic computer science and industry has widened. It's an open secret that there is little engineering in software engineering, which continues to rely not on codified scientific knowledge but on intuition and experience.Barr, who worked as a programmer for more than twenty years, describes how the industry has evolved, from the era of mainframes and Fortran to today's embrace of the cloud. He explains bugs and why software has so many of them, and why today's interconnected computers offer fertile ground for viruses and worms. The difference between good and bad software can be a single line of code, and Barr includes code to illustrate the consequences of seemingly inconsequential choices by programmers. Looking to the future, Barr writes that the best prospect for improving software engineering is the move to the cloud. When software is a service and not a product, companies will have more incentive to make it good rather than "good enough to ship."
Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
Bradley Efron - 2016
'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Cryptography Engineering: Design Principles and Practical Applications
Niels Ferguson - 2010
Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.
Higher-Order Perl: Transforming Programs with Programs
Mark Jason Dominus - 2005
However, Perl incorporates many features that have their roots in other languages such as Lisp. These advanced features are not well understood and are rarely used by most Perl programmers, but they are very powerful. They can automate tasks in everyday programming that are difficult to solve in any other way. One of the most powerful of these techniques is writing functions that manufacture or modify other functions. For example, instead of writing ten similar functions, a programmer can write a general pattern or framework that can then create the functions as needed according to the pattern. For several years Mark Jason Dominus has worked to apply functional programming techniques to Perl. Now Mark brings these flexible programming methods that he has successfully taught in numerous tutorials and training sessions to a wider audience.• Introduces powerful programming methods—new to most Perl programmers—that were previously the domain of computer scientists• Gradually builds up confidence by describing techniques of progressive sophistication• Shows how to improve everyday programs and includes numerous engaging code examples to illustrate the methods
Service-Oriented Design with Ruby and Rails
Paul Dix - 2010
Today, Rails developers and architects need better ways to interface with legacy systems, move into the cloud, and scale to handle higher volumes and greater complexity. In Service-Oriented Design with Ruby and Rails Paul Dix introduces a powerful, services-based design approach geared toward overcoming all these challenges. Using Dix's techniques, readers can leverage the full benefits of both Ruby and Rails, while overcoming the difficulties of working with larger codebases and teams. Dix demonstrates how to integrate multiple components within an enterprise application stack; create services that can easily grow and connect; and design systems that are easier to maintain and upgrade. Key concepts are explained with detailed Ruby code built using open source libraries such as ActiveRecord, Sinatra, Nokogiri, and Typhoeus. The book concludes with coverage of security, scaling, messaging, and interfacing with third-party services. Service-Oriented Design with Ruby and Rails will help you Build highly scalable, Ruby-based service architectures that operate smoothly in the cloud or with legacy systems Scale Rails systems to handle more requests, larger development teams, and more complex code bases Master new best practices for designing and creating services in Ruby Use Ruby to glue together services written in any language Use Ruby libraries to build and consume RESTful Web services Use Ruby JSON parsers to quickly represent resources from HTTP services Write lightweight, well-designed API wrappers around internal or external services Discover powerful non-Rails frameworks that simplify Ruby service implementation Implement standards-based enterprise messaging with Advanced Message Queuing Protocol (AMQP) Optimize performance with load balancing and caching Provide for security and authentication
Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
Matthew A. Russell - 2011
You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora