How to Count to Infinity


Marcus du Sautoy - 2020
    But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached. By the end of this book you'll be able to count to infinity... and beyond. On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!

What is Nationalism?


Romila Thapar - 2016
    

Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brains to Black Holes


Charles Seife - 2006
    In Decoding the Universe, Charles Seife draws on his gift for making cutting-edge science accessible to explain how this new tool is deciphering everything from the purpose of our DNA to the parallel universes of our Byzantine cosmos. The result is an exhilarating adventure that deftly combines cryptology, physics, biology, and mathematics to cast light on the new understanding of the laws that govern life and the universe.

Engineering Mathematics


S.R.K. Iyengar - 2007
    Based on the experience of the authors in teaching Mathematics Courses for almost four decades at the Institute of Technology, New Delhi, this text book rather than a guide/problem book, lays emphasis on the presentation of fundamentals and theoretical concepts in an intelligible and easy to understand manner.

Capoeira: History, Philosophy, Practice


Bira Almeida - 1986
    In this book Bira Almeida--or Mestre Acordeon as he is respectfully called in capoeira circles--documents his own tradition with both the panoramic eye of the historian and the passionate heart of the capoeirista. He transports the reader from the damn of New World history in Brazil to the streets of twentieth-century Bahia (the spiritual home of capoeira) to the giant urban centers of North America (wher capoeira is now spreading in new lineages from the old masters). This book is valuable for anyone interested in ethnocultural traditions, martial arts, and music, as well as for those who want to listen to the words of an actual mestre dedicated to preserving his Afro-Brazilian legacy.

The Joy of Game Theory: An Introduction to Strategic Thinking


Presh Talwalkar - 2013
    Articles from Game Theory Tuesdays have been referenced in The Freakonomics Blog, Yahoo Finance, and CNN.com. The second edition includes many streamlined explanations and incorporates suggestions from readers of the first edition. Game theory is the study of interactive decision making--that is, in situations where each person's action affects the outcome for the whole group. Game theory is a beautiful subject and this book will teach you how to understand the theory and practically implement solutions through a series of stories and the aid of over 30 illustrations. This book has two primary objectives. (1) To help you recognize strategic games, like the Prisoner's Dilemma, Bertrand Duopoly, Hotelling's Game, the Game of Chicken, and Mutually Assured Destruction. (2) To show you how to make better decisions and change the game, a powerful concept that can transform no-win situations into mutually beneficial outcomes. You'll learn how to negotiate better by making your threats credible, sometimes limiting options or burning bridges, and thinking about new ways to create better outcomes. As these goals indicate, game theory is about more than board games and gambling. It all seems so simple, and yet that definition belies the complexity of game theory. While it may only take seconds to get a sense of game theory, it takes a lifetime to appreciate and master it. This book will get you started.

A Short Account of the History of Mathematics


W.W. Rouse Ball - 1900
    From the early Greek influences to the Middle Ages and the Renaissance to the end of the 19th century, trace the fascinating foundation of mathematics as it developed through the ages. Aristotle, Galileo, Kepler, Newton: you know the names. Now here's what they really did, and the effect their discoveries had on our culture, all explained in a way the layperson can understand. Begin with the basis of arithmetic (Plato and the introduction of geometry), and discover why the use of Arabic numerals was critical to the development of both commerce and science. The development of calculus made space travel a reality, while the abacus prefigured the computer. The greats examined in depth include Leonardo da Vinci, a brilliant mathematician as well as artist; Pascal, who laid out the theory of probabilities; and Fermat, whose intriguing theory has only recently been solved.

Introduction to Superstrings and M-Theory


Michio Kaku - 1989
    Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: - Four-dimensional superstrings - Kac-Moody algebras - Teichm�ller spaces and Calabi-Yau manifolds - M-theory Membranes and D-branes - Duality and BPS relations - Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.

French: French For Beginners: A Practical Guide to Learn the Basics of French in 10 Days! (A SPECIAL BONUS FOR YOU INSIDE)


Manuel De Cortes - 2015
    Read on your PC, Mac, smart phone, tablet or Kindle device. If You Don't Have Kindle You Can Still Read This Book On Your Web Browser using Amazon Free Cloud ReaderThis book contains proven steps and strategies on how to pronounce French vowels and consonants, how to pluralize nouns, and how to get around your way in France, using all the helpful examples of phrases and dialogues provided in this book.Through this manual you will learn the basics of the romantic French language and gain confidence as you speak. To facilitate learning, easy-to-follow pronunciation guides have been included. Tips for tourists and other pertinent information about the City of Lights were extensively researched for your convenience. Here Is A Preview Of What You'll Learn Inside ✔ Numbers and Gender✔ Plural Forms of Nouns✔ Pronouns✔ Verbs✔ Prepositions✔ Useful Expressions✔ Much, much more! Take Action Right Away and START your amazing journey with French!

Start writing fiction


Open University - 2015
    You will also be able to look at the different genres for fiction.

Q.E.D.: Beauty in Mathematical Proof


Burkard Polster - 2004
    presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.

Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks


Persi Diaconis - 2011
    Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge.Diaconis and Graham tell the stories--and reveal the best tricks--of the eccentric and brilliant inventors of mathematical magic. The book exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card Monte, traces the history of mathematical magic back to the oldest mathematical trick--and much more.

Where There's a Will: Who Inherited What and Why


Stephen M. Silverman - 1991
    In Where There's a Will, Stephen M. Silverman shows just how different with a peek at the wills of the richest, most celebrated people of all time, and he provides the intimate scoop on what their heirs had to say about it. Discover what secret pact Clark Gable made in 1942 and took to his grave - only to be exposed when his will was read. Learn why it took more than a year for Liza Minnelli to raise the $37,500 needed to bury the ashes of her mother, Judy Garland, and what treasures were left to the heirs of Babe Ruth, James Dean, John Jacob Astor, Ernest Hemingway, and Ayn Rand once those wills cleared probate. From Marilyn Monroe and Andy Warhol to John Lennon, Jim Morrison, John Steinbeck, Rita Hayworth, and Jack Dempsey, Where There's a Will . . . is an utterly engrossing read sure to captivate tycoons and gossip addicts alike with its fascinating tales of how the other half bequeaths.

Math on Trial: How Numbers Get Used and Abused in the Courtroom


Leila Schneps - 2013
    Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.

The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics


Karl Sabbagh - 2002
    They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.