Doing Math with Python


Amit Saha - 2015
    Python is easy to learn, and it's perfect for exploring topics like statistics, geometry, probability, and calculus. You’ll learn to write programs to find derivatives, solve equations graphically, manipulate algebraic expressions, even examine projectile motion.Rather than crank through tedious calculations by hand, you'll learn how to use Python functions and modules to handle the number crunching while you focus on the principles behind the math. Exercises throughout teach fundamental programming concepts, like using functions, handling user input, and reading and manipulating data. As you learn to think computationally, you'll discover new ways to explore and think about math, and gain valuable programming skills that you can use to continue your study of math and computer science.If you’re interested in math but have yet to dip into programming, you’ll find that Python makes it easy to go deeper into the subject—let Python handle the tedious work while you spend more time on the math.

Deep Learning


John D. Kelleher - 2019
    When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.

Python for Informatics: Exploring Information: Exploring Information


Charles Severance - 2002
    You can think of Python as your tool to solve problems that are far beyond the capability of a spreadsheet. It is an easy-to-use and easy-to learn programming language that is freely available on Windows, Macintosh, and Linux computers. There are free downloadable copies of this book in various electronic formats and a self-paced free online course where you can explore the course materials. All the supporting materials for the book are available under open and remixable licenses. This book is designed to teach people to program even if they have no prior experience.

Secrets and Lies: Digital Security in a Networked World


Bruce Schneier - 2000
    Identity Theft. Corporate Espionage. National secrets compromised. Can anyone promise security in our digital world?The man who introduced cryptography to the boardroom says no. But in this fascinating read, he shows us how to come closer by developing security measures in terms of context, tools, and strategy. Security is a process, not a product – one that system administrators and corporate executives alike must understand to survive.This edition updated with new information about post-9/11 security.

Machine Learning with R


Brett Lantz - 2014
    This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

Data Mining: Practical Machine Learning Tools and Techniques


Ian H. Witten - 1999
    This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915            0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)

Hadoop in Action


Chuck Lam - 2010
    The intended readers are programmers, architects, and project managers who have to process large amounts of data offline. Hadoop in Action will lead the reader from obtaining a copy of Hadoop to setting it up in a cluster and writing data analytic programs.The book begins by making the basic idea of Hadoop and MapReduce easier to grasp by applying the default Hadoop installation to a few easy-to-follow tasks, such as analyzing changes in word frequency across a body of documents. The book continues through the basic concepts of MapReduce applications developed using Hadoop, including a close look at framework components, use of Hadoop for a variety of data analysis tasks, and numerous examples of Hadoop in action.Hadoop in Action will explain how to use Hadoop and present design patterns and practices of programming MapReduce. MapReduce is a complex idea both conceptually and in its implementation, and Hadoop users are challenged to learn all the knobs and levers for running Hadoop. This book takes you beyond the mechanics of running Hadoop, teaching you to write meaningful programs in a MapReduce framework.This book assumes the reader will have a basic familiarity with Java, as most code examples will be written in Java. Familiarity with basic statistical concepts (e.g. histogram, correlation) will help the reader appreciate the more advanced data processing examples. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

The Fourth Paradigm: Data-Intensive Scientific Discovery


Tony Hey - 2009
    Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets. The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud-computing technologies. This collection of essays expands on the vision of pioneering computer scientist Jim Gray for a new, fourth paradigm of discovery based on data-intensive science and offers insights into how it can be fully realized.

Designing Voice User Interfaces: How to Create Engaging and Compelling Experiences


Cathy Pearl - 2016
    But how can you design a voice interface for your mobile app so that users can talk to it? And not just to facilitate question-and-answer sessions, but also provide an engaging, compelling experience?With this practical guide, you ll learn basic voice user interface (VUI) principles for designing mobile apps that makes speech an important tool for interaction. You ll learn how to choose the right speech recognition engine, use best methods for testing VUI on mobile, and dive into advanced VUI design topics to make your VUI not just functional but great.Ideal for product managers, UX designers, and VUI designers, this book explains basic VUI principles for mobile app design, and shows you how to measure the performance of your VUI app and improve upon it. You ll also learn how to determine whether using voice for your app is a good idea in the first placeVUI design is not just about making things cool it s about making a user s experience more natural, more powerful, and more human."

Java Web Services: Up and Running


Martin Kalin - 2009
    You'll learn how to write web services from scratch and integrate existing services into your Java applications. With Java Web Services: Up and Running, you will:Understand the distinction between SOAP-based and REST-style services Write, deploy, and consume SOAP-based services in core Java Understand the Web Service Definition Language (WSDL) service contract Recognize the structure of a SOAP message Learn how to deliver Java-based RESTful web services and consume commercial RESTful services Know security requirements for SOAP- and REST-based web services Learn how to implement JAX-WS in various application servers Ideal for students as well as experienced programmers, Java Web Services: Up and Running is the concise guide you need to start working with these technologies right away.

You Don't Know JS: Up & Going


Kyle Simpson - 2015
    With the "You Don’t Know JS" book series, you’ll get a more complete understanding of JavaScript, including trickier parts of the language that many experienced JavaScript programmers simply avoid.The series’ first book, Up & Going, provides the necessary background for those of you with limited programming experience. By learning the basic building blocks of programming, as well as JavaScript’s core mechanisms, you’ll be prepared to dive into the other, more in-depth books in the series—and be well on your way toward true JavaScript.With this book you will: Learn the essential programming building blocks, including operators, types, variables, conditionals, loops, and functions Become familiar with JavaScript's core mechanisms such as values, function closures, this, and prototypes Get an overview of other books in the series—and learn why it’s important to understand all parts of JavaScript

Machine Learning With Random Forests And Decision Trees: A Mostly Intuitive Guide, But Also Some Python


Scott Hartshorn - 2016
    They are typically used to categorize something based on other data that you have. The purpose of this book is to help you understand how Random Forests work, as well as the different options that you have when using them to analyze a problem. Additionally, since Decision Trees are a fundamental part of Random Forests, this book explains how they work. This book is focused on understanding Random Forests at the conceptual level. Knowing how they work, why they work the way that they do, and what options are available to improve results. This book covers how Random Forests work in an intuitive way, and also explains the equations behind many of the functions, but it only has a small amount of actual code (in python). This book is focused on giving examples and providing analogies for the most fundamental aspects of how random forests and decision trees work. The reason is that those are easy to understand and they stick with you. There are also some really interesting aspects of random forests, such as information gain, feature importances, or out of bag error, that simply cannot be well covered without diving into the equations of how they work. For those the focus is providing the information in a straight forward and easy to understand way.

The Big Nine: How the Tech Titans and Their Thinking Machines Could Warp Humanity


Amy Webb - 2019
    We like to think that we are in control of the future of "artificial" intelligence. The reality, though, is that we -- the everyday people whose data powers AI -- aren't actually in control of anything. When, for example, we speak with Alexa, we contribute that data to a system we can't see and have no input into -- one largely free from regulation or oversight. The big nine corporations -- Amazon, Google, Facebook, Tencent, Baidu, Alibaba, Microsoft, IBM and Apple--are the new gods of AI and are short-changing our futures to reap immediate financial gain. In this book, Amy Webb reveals the pervasive, invisible ways in which the foundations of AI -- the people working on the system, their motivations, the technology itself -- is broken. Within our lifetimes, AI will, by design, begin to behave unpredictably, thinking and acting in ways which defy human logic. The big nine corporations may be inadvertently building and enabling vast arrays of intelligent systems that don't share our motivations, desires, or hopes for the future of humanity. Much more than a passionate, human-centered call-to-arms, this book delivers a strategy for changing course, and provides a path for liberating us from algorithmic decision-makers and powerful corporations.

The Book of PoC||GTFO


Manul Laphroaig - 2017
    Until now, the journal has only been available online or printed and distributed for free at hacker conferences worldwide.Consistent with the journal's quirky, biblical style, this book comes with all the trimmings: a leatherette cover, ribbon bookmark, bible paper, and gilt-edged pages. The book features more than 80 technical essays from numerous famous hackers, authors of classics like "Reliable Code Execution on a Tamagotchi," "ELFs are Dorky, Elves are Cool," "Burning a Phone," "Forget Not the Humble Timing Attack," and "A Sermon on Hacker Privilege." Twenty-four full-color pages by Ange Albertini illustrate many of the clever tricks described in the text.

Code Craft: The Practice of Writing Excellent Code


Pete Goodliffe - 2006
    But not all know how to craft great code - code that is well written and easy to understand. Code Craft teaches programmers how to move beyond writing correct code to writing great code. The book covers code writing concerns, including code presentation style, variable naming, error handling, and security; and the wider issues of programming in the real world, such as good teamwork, development processes, and documentation. Code Craft presents language-agnostic advice that is relevant to all developers, from an author with loads of practical experience. A Q&A section at the end of each chapter helps readers to review the material and makes the book suited for academic use as well.