Book picks similar to
General Relativity and the Einstein Equations by Yvonne Choquet-Bruhat
physics
general-relativity
math-phys
favoritter
Planck: Driven by Vision, Broken by War
Brandon R. Brown - 2015
But Planck's story is not well known, especially in the United States. A German physicist working during the firsthalf of the twentieth century, his library, personal journals, notebooks, and letters were all destroyed with his home in World War II. What remains, other than his contributions to science, are handwritten letters in German shorthand, and tributes from other scientists of the time.In Planck: Driven by Vision, Broken by War, Brandon R. Brown interweaves the voices and writings of Planck, his family, and his contemporaries--with many passages appearing in English for the first time--to create a portrait of a groundbreaking physicist working in the midst of war. Planck spentmuch of his adult life grappling with the identity crisis of being an influential German with ideas that ran counter to his government. During the later part of his life, he survived bombings and battlefields, surgeries and blood transfusions, all the while performing his influential work amidst aviolent and crumbling Nazi bureaucracy. When his son was accused of treason, Planck tried to use his standing as a German national treasure, and wrote directly to Hitler to spare his son's life. Brown tells the story of Planck's friendship with the far more outspoken Albert Einstein, and shows howhis work fits within the explosion of technology and science that occurred during his life.This story of a brilliant man living in a dangerous time gives Max Planck his rightful place in the history of science, and it shows how war-torn Germany deeply impacted his life and work.
Beyond Infinity: An Expedition to the Outer Limits of Mathematics
Eugenia Cheng - 2017
Along the way she considers how to use a chessboard to plan a worldwide dinner party, how to make a chicken-sandwich sandwich, and how to create infinite cookies from a finite ball of dough. Beyond Infinity shows how this little symbol holds the biggest idea of all.
"Beyond Infinity is a spirited and friendly guide--appealingly down to earth about math that's extremely far out." --Jordan Ellenberg, author of How Not to Be Wrong
"Dr. Cheng . . . has a knack for brushing aside conventions and edicts, like so many pie crumbs from a cutting board."
--Natalie Angier, New York Times
Einstein's Heroes: Imagining the World Through the Language of Mathematics
Robyn Arianrhod - 2004
Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
The Philosophical Breakfast Club: Four Remarkable Friends Who Transformed Science and Changed the World
Laura J. Snyder - 2011
Snyder exposes the political passions, religious impulses, friendships, rivalries, and love of knowledge—and power—that drove these extraordinary men. Whewell (who not only invented the word “scientist,” but also founded the fields of crystallography, mathematical economics, and the science of tides), Babbage (a mathematical genius who invented the modern computer), Herschel (who mapped the skies of the Southern Hemisphere and contributed to the invention of photography), and Jones (a curate who shaped the science of economics) were at the vanguard of the modernization of science. This absorbing narrative of people, science and ideas chronicles the intellectual revolution inaugurated by these men, one that continues to mold our understanding of the world around us and of our place within it. Drawing upon the voluminous correspondence between the four men over the fifty years of their work, Laura J. Snyder shows how friendship worked to spur the men on to greater accomplishments, and how it enabled them to transform science and help create the modern world.
Quantum Field Theory for the Gifted Amateur
Tom Lancaster - 2014
Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in detail. Using numerous worked examples, diagrams, and careful physically motivated explanations, this book will smooth the path towards understanding the radically different and revolutionary view of the physical world that quantum field theory provides, and which all physicists should have the opportunity to experience.To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/ad....
Geons, Black Holes and Quantum Foam: A Life in Physics
John Archibald Wheeler - 1998
John Archibald Wheeler's fascinating life brings us face to face with the central characters and discoveries of modern physics. He was the first American to learn of the discovery of nuclear fission, later coined the term "black hole," led a renaissance in gravitation physics, and helped to build Princeton University into a mecca for physicists.From nuclear physics, to quantum theory, to relativity and gravitation, Wheeler's work has set the trajectory of research for half a century. His career has brought him into contact with the most brilliant minds of his field; Fermi, Bethe, Rabi, Teller, Oppenheimer, and Wigner are among those he called colleagues and friends. In this rich autobiography, Wheeler reveals in fascinating detail the excitement of each discovery, the character of each colleague, and the underlying passion for knowledge that drives him still.
37 Years' Chapterwise Solved Papers (2015-1979) IIT JEE Physics
D.C. Pandey - 2014
It takes hours of hard work and one needs to be very dedicated & focused in order to do well in the exams. Every year a large number of students dream of getting into IITs, the premier engineering institutes of our country, but only the ones with thorough preparation and determination succeed in getting admission in undergraduate engineering programs at IITs. Getting into an IIT is all about practice and with this best selling resource from Arihant students preparing for JEE Main & Advanced can get themselves perfected and have an upper edge over other students. The present book for JEE Main and Advanced Physics has been divided into 17 Chapters namely, General Physics, Kinematics, Laws of Motion, Work, Power & Energy, Centre of Mass, Rotation, Gravitation, Simple Harmonic Motion, Properties of Matter, Wave Motion, Heat & Thermodynamics, Optics, Current Electricity, Electrostatics, Magnetics, Electromagnetic Induction & Alternating Current and Modern Physics, according to the syllabi of the entrance examination. This specialized book contains last 37 Years’ (1979-2015) Chapterwise Solved Questions of IIT JEE Physics along with previous years’ solved papers of IIT JEE and JEE Main & Advanced. The entire syllabus of Class 11th and 12th has been dealt with comprehensively in this book. Also all the previous years’ questions along with their authentic & accurate solutions have been covered chapterwise and Topicwise in this book. Also wherever required necessary study material required for comprehensive understanding has been included in each chapter. Solved Paper 2015 JEE Advanced has also been included to help aspirants get an insight into the current pattern of the examination. As the book contains ample number of previous solved questions and relevant theoretical content, it for sure will help the aspirants score higher in the upcoming JEE Main and Advanced Entrance Examination 2016.
Time's Arrow and Archimedes' Point: New Directions for the Physics of Time
Huw Price - 1996
Price begins with the mystery of the arrow of time. Why, for example, does disorder always increase, as required by the second law of thermodynamics? Price shows that, for over a century, most physicists have thought about these problems the wrong way. Misled by the human perspective from withintime, which distorts and exaggerates the differences between past and future, they have fallen victim to what Price calls the double standard fallacy: proposed explanations of the difference between the past and the future turn out to rely on a difference which has been slipped in at thebeginning, when the physicists themselves treat the past and future in different ways. To avoid this fallacy, Price argues, we need to overcome our natural tendency to think about the past and the future differently. We need to imagine a point outside time -- an Archimedean view from nowhen --from which to observe time in an unbiased way. Offering a lively criticism of many major modern physicists, including Richard Feynman and Stephen Hawking, Price shows that this fallacy remains common in physics today -- for example, when contemporary cosmologists theorize about the eventual fate of the universe. The big bang theory normallyassumes that the beginning and end of the universe will be very different. But if we are to avoid the double standard fallacy, we need to consider time symmetrically, and take seriously the possibility that the arrow of time may reverse when the universe recollapses into a big crunch. Price then turns to the greatest mystery of modern physics, the meaning of quantum theory. He argues that in missing the Archimedean viewpoint, modern physics has missed a radical and attractive solution to many of the apparent paradoxes of quantum physics. Many consequences of quantum theoryappear counterintuitive, such as Schrodinger's Cat, whose condition seems undetermined until observed, and Bell's Theorem, which suggests a spooky nonlocality, where events happening simultaneously in different places seem to affect each other directly. Price shows that these paradoxes can beavoided by allowing that at the quantum level the future does, indeed, affect the past. This demystifies nonlocality, and supports Einstein's unpopular intuition that quantum theory describes an objective world, existing independently of human observers: the Cat is alive or dead, even when nobodylooks. So interpreted, Price argues, quantum mechanics is simply the kind of theory we ought to have expected in microphysics -- from the symmetric standpoint.Time's Arrow and Archimedes' Point presents an innovative and controversial view of time and contemporary physics. In this exciting book, Price urges physicists, philosophers, and anyone who has ever pondered the mysteries of time to look at the world from the fresh perspective of Archimedes' Pointand gain a deeper understanding of ourselves, the universe around us, and our own place in time.