Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Sri Madvirat Pothuluri Veerabrahmendra Swamy vari Sampoorna Jeevitha Charitra


Thadanki Venkata Lakshmi Narasimharao - 2009
    The year 2012 does not indicate the end of the World, as said by Mayan Calendar, but as per Kalagnanam severe earthquakes and calamities are indicated in the Telugu year Nandana (2012–13) that takes millions of lives, and also revival of Mayan civilization(Mayan people are said to be the Descendants of Viswakarma/Viswabrahmin community of India, who have flown to North America for some reasons, a long ago). Possible reason behind the ending of Mayan Calendar on 21-12-2012 is, they might have noticed the advent of Lord Kalki/Lord Veera Bhoga Vasantha Raaya, change of velocity of planets, Stars and Milkyway/Galaxy, and as such they would have left the Calendar calculations and predictions to our fate. Surprisingly, it was clearly mentioned about the change of velocity of planets, etc. in Kalagnanam, and in particular, there is change in the velocity of Jupiter after Plavanga (2027–28) and suddenly from 2034 Jupiter will transit three Rasis a year.

A Human's Guide to Machine Intelligence: How Algorithms Are Shaping Our Lives and How We Can Stay in Control


Kartik Hosanagar - 2019
    We've even delegated life-and-death decisions to algorithms--decisions once made by doctors, pilots, and judges. In his new book, Kartik Hosanagar surveys the brave new world of algorithmic decision-making and reveals the potentially dangerous biases they can give rise to as they increasingly run our lives. He makes the compelling case that we need to arm ourselves with a better, deeper, more nuanced understanding of the phenomenon of algorithmic thinking. And he gives us a route in, pointing out that algorithms often think a lot like their creators--that is, like you and me.Hosanagar draws on his experiences designing algorithms professionally--as well as on history, computer science, and psychology--to explore how algorithms work and why they occasionally go rogue, what drives our trust in them, and the many ramifications of algorithmic decision-making. He examines episodes like Microsoft's chatbot Tay, which was designed to converse on social media like a teenage girl, but instead turned sexist and racist; the fatal accidents of self-driving cars; and even our own common, and often frustrating, experiences on services like Netflix and Amazon. A Human's Guide to Machine Intelligence is an entertaining and provocative look at one of the most important developments of our time and a practical user's guide to this first wave of practical artificial intelligence.

Genius Makers: The Mavericks Who Brought AI to Google, Facebook, and the World


Cade Metz - 2021
    Through the lives of Geoff Hinton and other major players, Metz explains this transformative technology and makes the quest thrilling.--Walter Isaacson, author of The Code Breaker Recipient of starred reviews in both Kirkus and Library JournalTHE UNTOLD TECH STORY OF OUR TIMEWhat does it mean to be smart? To be human? What do we really want from life and the intelligence we have, or might create?With deep and exclusive reporting, across hundreds of interviews, New York Times Silicon Valley journalist Cade Metz brings you into the rooms where these questions are being answered. Where an extraordinarily powerful new artificial intelligence has been built into our biggest companies, our social discourse, and our daily lives, with few of us even noticing.Long dismissed as a technology of the distant future, artificial intelligence was a project consigned to the fringes of the scientific community. Then two researchers changed everything. One was a sixty-four-year-old computer science professor who didn't drive and didn't fly because he could no longer sit down--but still made his way across North America for the moment that would define a new age of technology. The other was a thirty-six-year-old neuroscientist and chess prodigy who laid claim to being the greatest game player of all time before vowing to build a machine that could do anything the human brain could do.They took two very different paths to that lofty goal, and they disagreed on how quickly it would arrive. But both were soon drawn into the heart of the tech industry. Their ideas drove a new kind of arms race, spanning Google, Microsoft, Facebook, and OpenAI, a new lab founded by Silicon Valley kingpin Elon Musk. But some believed that China would beat them all to the finish line.Genius Makers dramatically presents the fierce conflict between national interests, shareholder value, the pursuit of scientific knowledge, and the very human concerns about privacy, security, bias, and prejudice. Like a great Victorian novel, this world of eccentric, brilliant, often unimaginably yet suddenly wealthy characters draws you into the most profound moral questions we can ask. And like a great mystery, it presents the story and facts that lead to a core, vital question:How far will we let it go?

Architects of Intelligence: The truth about AI from the people building it


Martin Ford - 2018
    of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel).Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. Editorial reviews: "In his newest book, Architects of Intelligence, Martin Ford provides us with an invaluable opportunity to learn from some of the most prominent thought leaders about the emerging fields of science that are shaping our future." -Al Gore, Former Vice President of the US "AI is going to shape our future, and Architects of Intelligence offers a unique and fascinating collection of perspectives from the top researchers and entrepreneurs who are driving progress in the field." - Eric Schmidt, former Chairman and CEO, Google "The best way to understand the challenges and consequences of AGI is to see inside the minds of industry experts shaping the field. Architects of Intelligence gives you that power." -Sam Altman, President of Y Combinator and co-chairman of OpenAI "Architects of Intelligence gets you inside the minds of the people building the technology that is going to transform our world. This is a book that everyone should read." -Reid Hoffman, Co-founder of LinkedIn

How We Learn: Why Brains Learn Better Than Any Machine . . . for Now


Stanislas Dehaene - 2018
    It seems so ordinary, everyone does it. Actually it's more of a black box, which Dehaene cracks open to reveal the awesome secrets within."--The New York Times Book Review An illuminating dive into the latest science on our brain's remarkable learning abilities and the potential of the machines we program to imitate themThe human brain is an extraordinary learning machine. Its ability to reprogram itself is unparalleled, and it remains the best source of inspiration for recent developments in artificial intelligence. But how do we learn? What innate biological foundations underlie our ability to acquire new information, and what principles modulate their efficiency?In How We Learn, Stanislas Dehaene finds the boundary of computer science, neurobiology, and cognitive psychology to explain how learning really works and how to make the best use of the brain's learning algorithms in our schools and universities, as well as in everyday life and at any age.

Forecasting: Principles and Practice


Rob J. Hyndman - 2013
    Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

Machine Learning Yearning


Andrew Ng
    But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

I Heart Logs: Event Data, Stream Processing, and Data Integration


Jay Kreps - 2014
    Even though most engineers don't think much about them, this short book shows you why logs are worthy of your attention.Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses--data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models.Go ahead and take the plunge with logs; you're going love them.Learn how logs are used for programmatic access in databases and distributed systemsDiscover solutions to the huge data integration problem when more data of more varieties meet more systemsUnderstand why logs are at the heart of real-time stream processingLearn the role of a log in the internals of online data systemsExplore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn

Data Feminism


Catherine D’Ignazio - 2020
    It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought.Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.”Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

Mining of Massive Datasets


Anand Rajaraman - 2011
    This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.

The Model Thinker: What You Need to Know to Make Data Work for You


Scott E. Page - 2018
    But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.

Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, Lego, and Rubber Ducks


Will Kurt - 2019
    But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that.This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples.By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to:- How to measure your own level of uncertainty in a conclusion or belief- Calculate Bayes theorem and understand what it's useful for- Find the posterior, likelihood, and prior to check the accuracy of your conclusions- Calculate distributions to see the range of your data- Compare hypotheses and draw reliable conclusions from themNext time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Kill the Power Gamer


Eric Vall - 2019
     He was a full time retail employee with dreams of becoming a professional gamer. But little did he know that his perfect woman was about to travel back in time to change history. This is a stand alone novel.