Book picks similar to
The Meaning of Relativity by Albert Einstein
science
physics
non-fiction
nonfiction
If the Universe Is Teeming with Aliens ... Where Is Everybody?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life
Stephen Webb - 2002
He provides readers with non-trivial insights into research fields they may not have encountered previously . . . I think everyone who has ever considered the possibility that other intelligent civilizations exist elsewhere within our galaxy will enjoy Where Is Everybody? They will find much to agree with, and much to argue about, in this very accessible volume.� �SCIENCE During a Los Alamos lunchtime conversation that took place more than 50 years ago, four world-class scientists agreed, given the size and age of the Universe, that advanced extraterrestrial civilizations simply had to exist. The sheer numbers demanded it. But one of the four, the renowned physicist and back-of-the-envelope calculator Enrico Fermi, asked the telling question: If the extraterrestrial life proposition is true, he wondered, "Where IS everybody?" In this lively and thought-provoking book, Stephen Webb presents a detailed discussion of the 50 most cogent and intriguing answers to Fermi's famous question, divided into three distinct groups: - Aliens are already here among us. Here are answers ranging from Leo Szilard's suggestion that they are already here, and we know them as Hungarians, to the theorists who claim that aliens built Stonehenge and the Easter Island statues. - Aliens exist, but have not yet communicated. The theories in this camp range widely, from those who believe we simply don't have the technologies to receive their signals, to those who believe the enormities of space and time work against communication, to those who believe they're hiding from us. - Aliens do not exist. Here are the doubters' arguments, from the Rare Earth theory to the author's own closely argued and cogently stated skepticism. The proposed solutions run the gamut from the crackpot to the highly serious, but all deserve our consideration. The varieties of arguments -- from first-rate scientists, philosophers and historians, and science fiction authors -- turn out to be astonishing, entertaining, and vigorous intellectual exercises for any reader interested in science and the sheer pleasure of speculative thinking. Stephen Webb is a physicist working at the Open University in England and the author of Measuring the Universe.
Principles of Geology
Charles Lyell - 1830
Written with clarity and a dazzling intellectual passion, it is both a seminal work of modern geology and a compelling precursor to Darwinism, exploring the evidence for radical changes in climate and geography across the ages and speculating on the progressive development of life. A profound influence on Darwin, Principles of Geology also captured the imagination of contemporaries such as Melville, Emerson, Tennyson and George Eliot, transforming science with its depiction of the powerful forces that shape the natural world.
The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy
Roberto Mangabeira Unger - 2014
The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.
13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time
Michael Brooks - 2008
The effects of homeopathy don’t go away under rigorous scientific conditions. The laws of nature aren’t what they used to be. Thirty years on, no one has an explanation for a seemingly intelligent signal received from outer space. The US Department of Energy is re-examining cold fusion because the experimental evidence seems too solid to ignore. The placebo effect is put to work in medicine while doctors can’t agree whether it even exists.In an age when science is supposed to be king, scientists are beset by experimental results they simply can’t explain. But, if the past is anything to go by, these anomalies contain the seeds of future revolutions. While taking readers on an entertaining tour d’horizon of the strangest of scientific findings – involving everything from our lack of free will to Martian methane that offers new evidence of life on the planet – Michael Brooks argues that the things we don’t understand are the key to what we are about to discover.This mind-boggling but entirely accessible survey of the outer limits of human knowledge is based on a short article by Michael Brooks for New Scientist magazine. It became the sixth most circulated story on the internet in 2005, and provoked widespread comment and compliments (Google “13 things that do not make sense” to see).Michael Brooks has now dug deeply into those mysteries, with extraordinary results.
Modern Quantum Mechanics
J.J. Sakurai - 1985
DLC: Quantum theory.
At Home in the Universe: The Search for the Laws of Self-Organization and Complexity
Stuart A. Kauffman - 1995
At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of greatcivilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertilemix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is agreat undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls order for free, that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a newentity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much likethe phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not ahighly improbable chance event, but almost inevitable). Kauffman uses the basic insight of order for free to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science ofcomplexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules tofind new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element toKauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it a landmark and a classic. And Nobel Laureate Philip Anderson wrote that there are few people in this world who ever ask the right questions of science, and they are theones who affect its future most profoundly. Stuart Kauffman is one of these. In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.
Philosophical Essays
Gottfried Wilhelm Leibniz - 1716
In addition, the wide range of Leibniz's work--letters, published papers, and fragments on a variety of philosophical, religious, mathematical, and scientific questions over a fifty-year period--heightens the challenge of preparing an edition of his writings in English translation from the French and Latin.