Book picks similar to
Nanosystems: Molecular Machinery, Manufacturing, and Computation by K. Eric Drexler
science
non-fiction
nonfiction
reference
Computational Thinking
Peter J. Denning - 2019
More recently, "computational thinking" has become part of the K-12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview, tracing a genealogy that begins centuries before digital computers and portraying computational thinking as pioneers of computing have described it.The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as "computers") who performed complex calculations as teams engaged in CT long before electronic computers. The authors identify six dimensions of today's highly developed CT--methods, machines, computing education, software engineering, computational science, and design--and cover each in a chapter. Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
Probability Theory: The Logic of Science
E.T. Jaynes - 1999
It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.
The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind
Michio Kaku - 2014
For the first time in history, the secrets of the living brain are being revealed by a battery of high tech brain scans devised by physicists. Now what was once solely the province of science fiction has become a startling reality. Recording memories, telepathy, videotaping our dreams, mind control, avatars, and telekinesis are not only possible; they already exist. The Future of the Mind gives us an authoritative and compelling look at the astonishing research being done in top laboratories around the world—all based on the latest advancements in neuroscience and physics. One day we might have a "smart pill" that can enhance our cognition; be able to upload our brain to a computer, neuron for neuron; send thoughts and emotions around the world on a "brain-net"; control computers and robots with our mind; push the very limits of immortality; and perhaps even send our consciousness across the universe. Dr. Kaku takes us on a grand tour of what the future might hold, giving us not only a solid sense of how the brain functions but also how these technologies will change our daily lives. He even presents a radically new way to think about "consciousness" and applies it to provide fresh insight into mental illness, artificial intelligence and alien consciousness. With Dr. Kaku's deep understanding of modern science and keen eye for future developments, The Future of the Mind is a scientific tour de force--an extraordinary, mind-boggling exploration of the frontiers of neuroscience.
More Than Human: Embracing the Promise of Biological Enhancement
Ramez Naam - 2005
Book by Naam, Ramez
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Surviving AI: The promise and peril of artificial intelligence
Calum Chace - 2015
If we get it right it will make humans almost godlike. If we get it wrong... well, extinction is not the worst possible outcome.“Surviving AI” is a concise, easy-to-read guide to what's coming, taking you through technological unemployment (the economic singularity) and the possible creation of a superintelligence (the technological singularity).Here's what some of the leading thinkers in the field have to say about it:A sober and easy-to-read review of the risks and opportunities that humanity will face from AI. Jaan Tallinn – co-founder of Skype Understanding AI – its promise and its dangers – is emerging as one of the great challenges of coming decades and this is an invaluable guide to anyone who’s interested, confused, excited or scared. David Shukman – BBC Science Editor We have recently seen a surge in the volume of scholarly analysis of this topic; Chace impressively augments that with this high-quality, more general-audience discussion. Aubrey de Grey – CSO of SENS Research Foundation; former AI researcher It's rare to see a book about the potential End of the World that is fun to read without descending into sensationalism or crass oversimplification. Ben Goertzel – chairman of Novamente LLC Calum Chace is a prescient messenger of the risks and rewards of artificial intelligence. In “Surviving AI” he has identified the most essential issues and developed them with insight and wit – so that the very framing of the questions aids our search for answers. Chace’s sensible balance between AI’s promise and peril makes “Surviving AI” an excellent primer for anyone interested in what’s happening, how we got here, and where we are headed. Kenneth Cukier – co-author of “Big Data” If you’re not thinking about AI, you’re not thinking. “Surviving AI” combines an essential grounding in the state of the art with a survey of scenarios that will be discussed with equal vigor at cocktail parties and academic colloquia. Chris Meyer – author of “Blur”, “It’s Alive”, and “Standing on the Sun” The appearance of Calum Chace's book is of some considerable personal satisfaction to me, because it signifies the fact that the level of social awareness of the rise of massively intelligent machines has finally reached the mainstream. If you want to survive the next few decades, you cannot afford NOT to read Chace's book. Prof. Dr. Hugo de Garis – former director of the Artificial Brain Lab, Xiamen University, China “Surviving AI” is an exceptionally clear, well-researched and balanced introduction to a complex and controversial topic, and is a compelling read to boot. Seán Ó hÉigeartaigh – executive director of Cambridge Centre for the Study of Existential Risk In “Surviving AI”, Calum Chace provides a marvellously accessible guide to the swirls of controversy that surround discussion of what is likely to be the single most important event in human history - the emergence of artificial super
Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World
Mark Miodownik - 2013
Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik a globally-renowned materials scientist has spent his life exploring In this book he examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the foam in his sneakers and the concrete in a nearby skyscraper.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
The AI Revolution: The Road to Superintelligence
Tim Urban - 2015
The topic everyone in the world should be talking about.
Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction
Arvind Narayanan - 2016
Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age.How do Bitcoin and its block chain actually work? How secure are your bitcoins? How anonymous are their users? Can cryptocurrencies be regulated? These are some of the many questions this book answers. It begins by tracing the history and development of Bitcoin and cryptocurrencies, and then gives the conceptual and practical foundations you need to engineer secure software that interacts with the Bitcoin network as well as to integrate ideas from Bitcoin into your own projects. Topics include decentralization, mining, the politics of Bitcoin, altcoins and the cryptocurrency ecosystem, the future of Bitcoin, and more.An essential introduction to the new technologies of digital currencyCovers the history and mechanics of Bitcoin and the block chain, security, decentralization, anonymity, politics and regulation, altcoins, and much moreFeatures an accompanying website that includes instructional videos for each chapter, homework problems, programming assignments, and lecture slidesAlso suitable for use with the authors' Coursera online courseElectronic solutions manual (available only to professors)
Hibernate in Action
Christian Bauer - 2004
Why is this open-source tool so popular? Because it automates a tedious task: persisting your Java objects to a relational database. The inevitable mismatch between your object-oriented code and the relational database requires you to write code that maps one to the other. This code is often complex, tedious and costly to develop. Hibernate does the mapping for you.Not only that, Hibernate makes it easy. Positioned as a layer between your application and your database, Hibernate takes care of loading and saving of objects. Hibernate applications are cheaper, more portable, and more resilient to change. And they perform better than anything you are likely to develop yourself."Hibernate in Action" carefully explains the concepts you need, then gets you going. It builds on a single example to show you how to use Hibernate in practice, how to deal with concurrency and transactions, how to efficiently retrieve objects and use caching.The authors created Hibernate and they field questions from the Hibernate community every day-they know how to make Hibernate sing. Knowledge and insight seep out of every pore of this book."What's Inside"- ORM concepts- Getting started- Many real-world tasks- The Hibernate application development process
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Human Compatible: Artificial Intelligence and the Problem of Control
Stuart Russell - 2019
Conflict between humans and machines is seen as inevitable and its outcome all too predictable.In this groundbreaking book, distinguished AI researcher Stuart Russell argues that this scenario can be avoided, but only if we rethink AI from the ground up. Russell begins by exploring the idea of intelligence in humans and in machines. He describes the near-term benefits we can expect, from intelligent personal assistants to vastly accelerated scientific research, and outlines the AI breakthroughs that still have to happen before we reach superhuman AI. He also spells out the ways humans are already finding to misuse AI, from lethal autonomous weapons to viral sabotage.If the predicted breakthroughs occur and superhuman AI emerges, we will have created entities far more powerful than ourselves. How can we ensure they never, ever, have power over us? Russell suggests that we can rebuild AI on a new foundation, according to which machines are designed to be inherently uncertain about the human preferences they are required to satisfy. Such machines would be humble, altruistic, and committed to pursue our objectives, not theirs. This new foundation would allow us to create machines that are provably deferential and provably beneficial.In a 2014 editorial co-authored with Stephen Hawking, Russell wrote, "Success in creating AI would be the biggest event in human history. Unfortunately, it might also be the last." Solving the problem of control over AI is not just possible; it is the key that unlocks a future of unlimited promise.