Book picks similar to
Mathematica Cookbook by Sal Mangano
math
reference
mathematica
at-university-library
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
Michael G. Milton - 2009
If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Leonardo da Vinci
Jay Williams - 2014
Here, from author Jay Williams, is the moving story of the man behind the Renaissance myth.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
The Principles of Mathematics
Bertrand Russell - 1903
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.
Information Theory: A Tutorial Introduction
James V. Stone - 2015
In this richly illustrated book, accessible examples are used to show how information theory can be understood in terms of everyday games like '20 Questions', and the simple MatLab programs provided give hands-on experience of information theory in action. Written in a tutorial style, with a comprehensive glossary, this text represents an ideal primer for novices who wish to become familiar with the basic principles of information theory.Download chapter 1 from http://jim-stone.staff.shef.ac.uk/Boo...
How to Ace Calculus: The Streetwise Guide
Colin Conrad Adams - 1998
Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.
A Bug Hunter's Diary: A Guided Tour Through the Wilds of Software Security
Tobias Klein - 2011
In this one-of-a-kind account, you'll see how the developers responsible for these flaws patched the bugs—or failed to respond at all. As you follow Klein on his journey, you'll gain deep technical knowledge and insight into how hackers approach difficult problems and experience the true joys (and frustrations) of bug hunting.Along the way you'll learn how to:Use field-tested techniques to find bugs, like identifying and tracing user input data and reverse engineering Exploit vulnerabilities like NULL pointer dereferences, buffer overflows, and type conversion flaws Develop proof of concept code that verifies the security flaw Report bugs to vendors or third party brokersA Bug Hunter's Diary is packed with real-world examples of vulnerable code and the custom programs used to find and test bugs. Whether you're hunting bugs for fun, for profit, or to make the world a safer place, you'll learn valuable new skills by looking over the shoulder of a professional bug hunter in action.
Introduction to Machine Learning
Ethem Alpaydin - 2004
Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. "Introduction to Machine Learning" is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.
Practical Cryptography
Niels Ferguson - 2003
The gold standard for attaining security is cryptography because it provides the most reliable tools for storing or transmitting digital information. Written by Niels Ferguson, lead cryptographer for Counterpane, Bruce Schneier's security company, and Bruce Schneier himself, this is the much anticipated follow-up book to Schneier's seminal encyclopedic reference, Applied Cryptography, Second Edition (0-471-11709-9), which has sold more than 150,000 copies. Niels Ferguson (Amsterdam, Netherlands) is a cryptographic engineer and consultant at Counterpane Internet Security. He has extensive experience in the creation and design of security algorithms, protocols, and multinational security infrastructures. Previously, Ferguson was a cryptographer for DigiCash and CWI. At CWI he developed the first generation of off-line payment protocols. He has published numerous scientific papers. Bruce Schneier (Minneapolis, MN) is Founder and Chief Technical Officer at Counterpane Internet Security, a managed-security monitoring company. He is also the author of Secrets and Lies: Digital Security in a Networked World (0-471-25311-1).
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data
Dice World: Science and Life in a Random Universe
Brian Clegg - 2013
Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain.Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic – so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory, showing that everything in the universe has probability at its heart.That gives human beings a problem. We understand the world through patterns. Randomness and probability will always be alien to us. But it’s time to plunge into this fascinating, shadowy world, because randomness crops up everywhere. Probability and statistics are the only way to get a grip on nature’s workings. They may even seal the fate of free will and predict how the universe will end.Forget Newton’s clockwork universe. Welcome to Dice World.
Learning Java
Patrick Niemeyer - 1996
With Java 5.0, you'll not only find substantial changes in the platform, but to the language itself-something that developers of Java took five years to complete. The main goal of Java 5.0 is to make it easier for you to develop safe, powerful code, but none of these improvements makes Java any easier to learn, even if you've programmed with Java for years. And that means our bestselling hands-on tutorial takes on even greater significance."Learning Java" is the most widely sought introduction to the programming language that's changed the way we think about computing. Our updated third edition takes an objective, no-nonsense approach to the new features in Java 5.0, some of which are drastically different from the way things were done in any previous versions. The most essential change is the addition of "generics," a feature that allows developers to write, test, and deploy code once, and then reuse the code again and again for different data types. The beauty of generics is that more problems will be caught during development, and "Learning Java" will show you exactly how it's done.Java 5.0 also adds more than 1,000 new classes to the Java library. That means 1,000 new things you can do without having to program it in yourself. That's a huge change. With our book's practical examples, you'll come up to speed quickly on this and other new features such as loops and threads. The new edition also includes an introduction to Eclipse, the open source IDE that is growing in popularity. "Learning Java," 3rd Edition addresses all of the important uses of Java, such as web applications, servlets, and XML that are increasingly driving enterprise applications.
Java: How to Program
Harvey Deitel - 1996
The Deitels' groundbreaking How to Program series offers unparalleled breadth and depth of programming concepts and intermediate-level topics for further study. The texts in the series feature hundreds of complete, working programs with thousands of lines of code--more than any other texts of their kind. Now, the world's best-selling Java textbook is again completely up-to- date with The Java 2 Platform Standard Edition (J2SE) 5.0.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect