The Java Programming Language


Ken Arnold - 1996
    As the creators of the Java programming language, the authors help programmers understand why Java is such a powerful language. As a result, the programmers learn how Java is suitable for building a variety of applications. The authors also provide unique "behind-the-scenes" insights into how the language was designed and intended to be used. Thoroughly revised from start to finish, this fourth edition covers all of the features of J2SE 5.0 release. Updates to the fourth edition of this best-seller include concise coverage on generics, metadata, autoboxing, enumerations, enhanced loops, and more.

On LISP: Advanced Techniques for Common LISP


Paul Graham - 1993
    On Lisp explains the reasons behind Lisp's growing popularity as a mainstream programming language. On Lisp is a comprehensive study of advanced Lisp techniques, with bottom-up programming as the unifying theme. It gives the first complete description of macros and macro applications. The book also covers important subjects related to bottom-up programming, including functional programming, rapid prototyping, interactive development, and embedded languages. The final chapter takes a deeper look at object-oriented programming than previous Lisp books, showing the step-by-step construction of a working model of the Common Lisp Object System (CLOS). As well as an indispensable reference, On Lisp is a source of software. Its examples form a library of functions and macros that readers will be able to use in their own Lisp programs.

A Common-Sense Guide to Data Structures and Algorithms: Level Up Your Core Programming Skills


Jay Wengrow - 2017
    If you have received one of these copies, please contact the Pragmatic Bookshelf at support@pragprog.com, and we will replace it for you.Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today's web and mobile apps. This book takes a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code. Graphics and examples make these computer science concepts understandable and relevant. You can use these techniques with any language; examples in the book are in JavaScript, Python, and Ruby.Use Big O notation, the primary tool for evaluating algorithms, to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You'll even encounter a single keyword that can give your code a turbo boost. Jay Wengrow brings to this book the key teaching practices he developed as a web development bootcamp founder and educator.Use these techniques today to make your code faster and more scalable.

Computer Science Distilled: Learn the Art of Solving Computational Problems


Wladston Ferreira Filho - 2017
    Designed for readers who don't need the academic formality, it's a fast and easy computer science guide. It teaches essential concepts for people who want to program computers effectively. First, it introduces discrete mathematics, then it exposes the most common algorithms and data structures. It also shows the principles that make computers and programming languages work.

Quantum Computation and Quantum Information


Michael A. Nielsen - 2000
    A wealth of accompanying figures and exercises illustrate and develop the material in more depth. They describe what a quantum computer is, how it can be used to solve problems faster than familiar "classical" computers, and the real-world implementation of quantum computers. Their book concludes with an explanation of how quantum states can be used to perform remarkable feats of communication, and of how it is possible to protect quantum states against the effects of noise.

UNIX and Linux System Administration Handbook


Evi Nemeth - 2010
    This is one of those cases. The UNIX System Administration Handbook is one of the few books we ever measured ourselves against." -From the Foreword by Tim O'Reilly, founder of O'Reilly Media "This book is fun and functional as a desktop reference. If you use UNIX and Linux systems, you need this book in your short-reach library. It covers a bit of the systems' history but doesn't bloviate. It's just straightfoward information delivered in colorful and memorable fashion." -Jason A. Nunnelley"This is a comprehensive guide to the care and feeding of UNIX and Linux systems. The authors present the facts along with seasoned advice and real-world examples. Their perspective on the variations among systems is valuable for anyone who runs a heterogeneous computing facility." -Pat Parseghian The twentieth anniversary edition of the world's best-selling UNIX system administration book has been made even better by adding coverage of the leading Linux distributions: Ubuntu, openSUSE, and RHEL. This book approaches system administration in a practical way and is an invaluable reference for both new administrators and experienced professionals. It details best practices for every facet of system administration, including storage management, network design and administration, email, web hosting, scripting, software configuration management, performance analysis, Windows interoperability, virtualization, DNS, security, management of IT service organizations, and much more. UNIX(R) and Linux(R) System Administration Handbook, Fourth Edition, reflects the current versions of these operating systems: Ubuntu(R) LinuxopenSUSE(R) LinuxRed Hat(R) Enterprise Linux(R)Oracle America(R) Solaris(TM) (formerly Sun Solaris)HP HP-UX(R)IBM AIX(R)

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Practical Common LISP


Peter Seibel - 2005
    This is the first book that introduces Lisp as a language for the real world.Practical Common Lisp presents a thorough introduction to Common Lisp, providing you with an overall understanding of the language features and how they work. Over a third of the book is devoted to practical examples, such as the core of a spam filter and a web application for browsing MP3s and streaming them via the Shoutcast protocol to any standard MP3 client software (e.g., iTunes, XMMS, or WinAmp). In other "practical" chapters, author Peter Seibel demonstrates how to build a simple but flexible in-memory database, how to parse binary files, and how to build a unit test framework in 26 lines of code.

Programming: Principles and Practice Using C++


Bjarne Stroustrup - 2008
    Available here:blubbu.com/download?i=0321992784Programming: Principles and Practice Using C++ (2nd Edition) PDF by Bjarne Stroustrup

Hibernate in Action


Christian Bauer - 2004
    Why is this open-source tool so popular? Because it automates a tedious task: persisting your Java objects to a relational database. The inevitable mismatch between your object-oriented code and the relational database requires you to write code that maps one to the other. This code is often complex, tedious and costly to develop. Hibernate does the mapping for you.Not only that, Hibernate makes it easy. Positioned as a layer between your application and your database, Hibernate takes care of loading and saving of objects. Hibernate applications are cheaper, more portable, and more resilient to change. And they perform better than anything you are likely to develop yourself."Hibernate in Action" carefully explains the concepts you need, then gets you going. It builds on a single example to show you how to use Hibernate in practice, how to deal with concurrency and transactions, how to efficiently retrieve objects and use caching.The authors created Hibernate and they field questions from the Hibernate community every day-they know how to make Hibernate sing. Knowledge and insight seep out of every pore of this book."What's Inside"- ORM concepts- Getting started- Many real-world tasks- The Hibernate application development process

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Introduction to Automata Theory, Languages, and Computation


John E. Hopcroft - 1979
    With this long-awaited revision, the authors continue to present the theory in a concise and straightforward manner, now with an eye out for the practical applications. They have revised this book to make it more accessible to today's students, including the addition of more material on writing proofs, more figures and pictures to convey ideas, side-boxes to highlight other interesting material, and a less formal writing style. Exercises at the end of each chapter, including some new, easier exercises, help readers confirm and enhance their understanding of the material. *NEW! Completely rewritten to be less formal, providing more accessibility to todays students. *NEW! Increased usage of figures and pictures to help convey ideas. *NEW! More detail and intuition provided for definitions and proofs. *NEW! Provides special side-boxes to present supplemental material that may be of interest to readers. *NEW! Includes more exercises, including many at a lower level. *NEW! Presents program-like notation for PDAs and Turing machines. *NEW! Increas

Growing Object-Oriented Software, Guided by Tests


Steve Freeman - 2009
    This one's a keeper." --Robert C. Martin "If you want to be an expert in the state of the art in TDD, you need to understand the ideas in this book."--Michael Feathers Test-Driven Development (TDD) is now an established technique for delivering better software faster. TDD is based on a simple idea: Write tests for your code before you write the code itself. However, this simple idea takes skill and judgment to do well. Now there's a practical guide to TDD that takes you beyond the basic concepts. Drawing on a decade of experience building real-world systems, two TDD pioneers show how to let tests guide your development and "grow" software that is coherent, reliable, and maintainable. Steve Freeman and Nat Pryce describe the processes they use, the design principles they strive to achieve, and some of the tools that help them get the job done. Through an extended worked example, you'll learn how TDD works at multiple levels, using tests to drive the features and the object-oriented structure of the code, and using Mock Objects to discover and then describe relationships between objects. Along the way, the book systematically addresses challenges that development teams encounter with TDD--from integrating TDD into your processes to testing your most difficult features. Coverage includes - Implementing TDD effectively: getting started, and maintaining your momentum throughout the project - Creating cleaner, more expressive, more sustainable code - Using tests to stay relentlessly focused on sustaining quality - Understanding how TDD, Mock Objects, and Object-Oriented Design come together in the context of a real software development project - Using Mock Objects to guide object-oriented designs - Succeeding where TDD is difficult: managing complex test data, and testing persistence and concurrency