Book picks similar to
Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance by Kai Lai Chung
mathematics
math-probability
math
probability-statistics
Statistics for Dummies
Deborah J. Rumsey - 2003
. ." and "The data bear this out. . . ." But the field of statistics is not just about data. Statistics is the entire process involved in gathering evidence to answer questions about the world, in cases where that evidence happens to be numerical data. Statistics For Dummies is for everyone who wants to sort through and evaluate the incredible amount of statistical information that comes to them on a daily basis. (You know the stuff: charts, graphs, tables, as well as headlines that talk about the results of the latest poll, survey, experiment, or other scientific study.) This book arms you with the ability to decipher and make important decisions about statistical results, being ever aware of the ways in which people can mislead you with statistics. Get the inside scoop on number-crunching nuances, plus insight into how you canDetermine the odds Calculate a standard score Find the margin of error Recognize the impact of polls Establish criteria for a good survey Make informed decisions about experiments This down-to-earth reference is chock-full of real examples from real sources that are relevant to your everyday life: from the latest medical breakthroughs, crime studies, and population trends to surveys on Internet dating, cell phone use, and the worst cars of the millennium. Statistics For Dummies departs from traditional statistics texts, references, supplement books, and study guides in the following ways:Practical and intuitive explanations of statistical concepts, ideas, techniques, formulas, and calculations. Clear and concise step-by-step procedures that intuitively explain how to work through statistics problems. Upfront and honest answers to your questions like, "What does this really mean?" and "When and how I will ever use this?" Chances are, Statistics For Dummies will be your No. 1 resource for discovering how numerical data figures into your corner of the universe.
Investment Analysis and Portfolio Management
Frank K. Reilly - 1979
Mixing investment instruments and capital markets with the theoretical detail on evaluating investments and opportunities to satisfy risk-return objectives along with how investment practice and theory is influenced by globalization. The material is intended to be rigorous and empirical yet not overly quantitative. Reilly/Brown provides the best foundation, used extensively by professionals, organizations, and schools across the country. A great source for those with both a theoretical and practical need for investment expertise.
Game Theory: A Nontechnical Introduction
Morton D. Davis - 1970
. . a most valuable contribution." — Douglas R. Hofstadter, author of Gödel, Escher, BachThe foundations of game theory were laid by John von Neumann, who in 1928 proved the basic minimax theorem, and with the 1944 publication of the Theory of Games and Economic Behavior, the field was established. Since then, game theory has become an enormously important discipline because of its novel mathematical properties and its many applications to social, economic, and political problems.Game theory has been used to make investment decisions, pick jurors, commit tanks to battle, allocate business expenses equitably — even to measure a senator's power, among many other uses. In this revised edition of his highly regarded work, Morton Davis begins with an overview of game theory, then discusses the two-person zero-sum game with equilibrium points; the general, two-person zero-sum game; utility theory; the two-person, non-zero-sum game; and the n-person game.A number of problems are posed at the start of each chapter and readers are given a chance to solve them before moving on. (Unlike most mathematical problems, many problems in game theory are easily understood by the lay reader.) At the end of the chapter, where solutions are discussed, readers can compare their "common sense" solutions with those of the author. Brimming with applications to an enormous variety of everyday situations, this book offers readers a fascinating, accessible introduction to one of the most fruitful and interesting intellectual systems of our time.
Foundations of Complex Analysis
S. Ponnusamy - 2002
Suitable for a two semester course in complex analysis, or as a supplementary text for an advanced course in function theory, this book aims to give students a good foundation of complex analysis and provides a basis for solving problems in mathematics, physics, engineering and many other sciences.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Chances Are . . .: Adventures in Probability
Michael Kaplan - 2003
All things are possible, only one thing actually happens; everything else is in the realm of probability. The twin disciplines of probability and statistics underpin every modern science and sketch the shape of all purposeful group activity- politics, economics, medicine, law, sports-giving humans a handle on the essential uncertainty of their existence. Yet while we are all aware of the hard facts, most of us still refuse to take account of probability-preferring to drive, not fly; buying into market blips; smoking cigarettes; denying we will ever age. There are some people, though-gamblers, risk buyers, forensic experts, doctors, strategists- who find probability's mass of incomplete uncertainties delightful and revelatory. "Chances Are" is their story. Combining philosophical and historical background with portraits of the men and women who command the forces of probability, this engaging, wide-ranging, and clearly written volume will be welcomed not only by the proven audiences for popular books like "E=MC2" and "The Golden Ratio" but by anyone interested in the workings of fate.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Humble Pi: A Comedy of Maths Errors
Matt Parker - 2019
Most of the time this math works quietly behind the scenes . . . until it doesn't. All sorts of seemingly innocuous mathematical mistakes can have significant consequences.Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean.Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.
Principles of Statistics
M.G. Bulmer - 1979
There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again for the classroom or for self-study.Principles of Statistics was created primarily for the student of natural sciences, the social scientist, the undergraduate mathematics student, or anyone familiar with the basics of mathematical language. It assumes no previous knowledge of statistics or probability; nor is extensive mathematical knowledge necessary beyond a familiarity with the fundamentals of differential and integral calculus. (The calculus is used primarily for ease of notation; skill in the techniques of integration is not necessary in order to understand the text.)Professor Bulmer devotes the first chapters to a concise, admirably clear description of basic terminology and fundamental statistical theory: abstract concepts of probability and their applications in dice games, Mendelian heredity, etc.; definitions and examples of discrete and continuous random variables; multivariate distributions and the descriptive tools used to delineate them; expected values; etc. The book then moves quickly to more advanced levels, as Professor Bulmer describes important distributions (binomial, Poisson, exponential, normal, etc.), tests of significance, statistical inference, point estimation, regression, and correlation. Dozens of exercises and problems appear at the end of various chapters, with answers provided at the back of the book. Also included are a number of statistical tables and selected references.
Bayes' Rule: A Tutorial Introduction to Bayesian Analysis
James V. Stone - 2013
Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, intuitive visual representations of real-world examples are used to show how Bayes' rule is actually a form of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices who wish to gain an intuitive understanding of Bayesian analysis. As an aid to understanding, online computer code (in MatLab, Python and R) reproduces key numerical results and diagrams.Stone's book is renowned for its visually engaging style of presentation, which stems from teaching Bayes' rule to psychology students for over 10 years as a university lecturer.
Red-Blooded Risk: Quantitative Strategies for Embracing Risk
Aaron Brown - 2011
This is the secret that lets tiny quantitative edges create hedge fund billionaires, and defines the powerful modern global derivatives economy. The same practical techniques are still used today by risk-takers in finance as well as many other fields. "Red-Blooded Risk" examines this approach and offers valuable advice for the calculated risk-takers who need precise quantitative guidance that will help separate them from the rest of the pack. While most commentators say that the last financial crisis proved it's time to follow risk-minimizing techniques, they're wrong. The only way to succeed at anything is to manage true risk, which includes the chance of loss. "Red-Blooded Risk" presents specific, actionable strategies that will allow you to be a practical risk-taker in even the most dynamic markets.Contains a secret history of Wall Street, the parts all the other books leave outIncludes an intellectually rigorous narrative addressing what it takes to really make it in any risky activity, on or off Wall StreetAddresses essential issues ranging from the way you think about chance to economics, politics, finance, and lifeWritten by Aaron Brown, one of the most calculated and successful risk takers in the world of finance, who was an active participant in the creation of modern risk management and had a front-row seat to the last meltdownWritten in an engaging but rigorous style, with no equationsContains illustrations and graphic narrative by renowned manga artist Eric KimThere are people who disapprove of every risk before the fact, but never stop anyone from doing anything dangerous because they want to take credit for any success. The recent financial crisis has swelled their ranks, but in learning how to break free of these people, you'll discover how taking on the right risk can open the door to the most profitable opportunities.
Linear Algebra
Georgi E. Shilov - 1971
Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.
Student Solutions Manual, Vol. 1 for Swokowski's Calculus: The Classic Edition
Earl W. Swokowski - 1991
Prepare for exams and succeed in your mathematics course with this comprehensive solutions manual! Featuring worked out-solutions to the problems in CALCULUS: THE CLASSIC EDITION, 5th Edition, this manual shows you how to approach and solve problems using the same step-by-step explanations found in your textbook examples.
Networks: An Introduction
M.E.J. Newman - 2010
The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.