Book picks similar to
More Math into LaTeX by George Grätzer


mathematics
computer-science
latex
non-fiction

Think Stats


Allen B. Downey - 2011
    This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data

HTML5 for Masterminds: How to take advantage of HTML5 to create amazing websites and revolutionary applications


Juan Diego Gauchat
    

Calculus with Analytic Geometry


Earl W. Swokowski - 1979
    

Modern Operating Systems


Andrew S. Tanenbaum - 1992
    What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD. Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls). The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets." It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms. Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals. Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson

Artificial Intelligence


Elaine Rich - 1983
    I. is explored and explained in this best selling text. Assuming no prior knowledge, it covers topics like neural networks and robotics. This text explores the range of problems which have been and remain to be solved using A. I. tools and techniques. The second half of this text is an excellent reference.

The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography


Simon Singh - 1999
    From Mary, Queen of Scots, trapped by her own code, to the Navajo Code Talkers who helped the Allies win World War II, to the incredible (and incredibly simple) logisitical breakthrough that made Internet commerce secure, The Code Book tells the story of the most powerful intellectual weapon ever known: secrecy.Throughout the text are clear technical and mathematical explanations, and portraits of the remarkable personalities who wrote and broke the world’s most difficult codes. Accessible, compelling, and remarkably far-reaching, this book will forever alter your view of history and what drives it. It will also make you wonder how private that e-mail you just sent really is.

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Numerical Analysis


Richard L. Burden - 1978
    Explaining how, why, and when the techniques can be expected to work, the Seventh Edition places an even greater emphasis on building readers' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. Applied problems from diverse areas, such as engineering and physical, computer, and biological sciences, are provided so readers can understand how numerical methods are used in real-life situations. The Seventh Edition has been updated and now addresses the evolving use of technology, incorporating it whenever appropriate.

Python: 3 Manuscripts in 1 book: - Python Programming For Beginners - Python Programming For Intermediates - Python Programming for Advanced


Maurice J. Thompson - 2018
    This Box Set Includes 3 Books: Python Programming For Beginners - Learn The Basics Of Python In 7 Days! Python Programming For Intermediates - Learn The Basics Of Python In 7 Days! Python Programming For Advanced - Learn The Basics Of Python In 7 Days! Python Programming For Beginners - Learn The Basics Of Python In 7 Days! Here's what you'll learn from this book: ✓Introduction ✓Understanding Python: A Detailed Background ✓How Python Works ✓Python Glossary ✓How to Download and Install Python ✓Python Programming 101: Interacting With Python in Different Ways ✓How to Write Your First Python Program ✓Variables, Strings, Lists, Tuples, Dictionaries ✓About User-Defined Functions ✓How to Write User-Defined Functions in Python ✓About Coding Style ✓Practice Projects: The Python Projects for Your Practice Python Programming For Intermediates - Learn The Basics Of Python In 7 Days! Here's what you'll learn from this book: ✓ Shallow copy and deep copy ✓ Objects and classes in Python–including python inheritance, multiple inheritances, and so on ✓ Recursion in Python ✓ Debugging and testing ✓ Fibonacci sequence (definition) and Memoization in Python in Python ✓ Arguments in Python ✓ Namespaces in Python and Python Modules ✓ Simple Python projects for Intermediates Python Programming For Advanced - Learn The Basics Of Python In 7 Days! Here's what you'll learn from this book: ✓File management ✓Python Iterator ✓Python Generator ✓Regular Expressions ✓Python Closure ✓Python Property ✓Python Assert, and ✓Simple recap projects Start Coding Now!

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Structure and Interpretation of Computer Programs


Harold Abelson - 1984
    This long-awaited revision contains changes throughout the text. There are new implementations of most of the major programming systems in the book, including the interpreters and compilers, and the authors have incorporated many small changes that reflect their experience teaching the course at MIT since the first edition was published. A new theme has been introduced that emphasizes the central role played by different approaches to dealing with time in computational models: objects with state, concurrent programming, functional programming and lazy evaluation, and nondeterministic programming. There are new example sections on higher-order procedures in graphics and on applications of stream processing in numerical programming, and many new exercises. In addition, all the programs have been reworked to run in any Scheme implementation that adheres to the IEEE standard.

Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development


Craig Larman - 2000
    Building on two widely acclaimed previous editions, Craig Larman has updated this book to fully reflect the new UML 2 standard, to help you master the art of object design, and to promote high-impact, iterative, and skillful agile modeling practices.Developers and students will learn object-oriented analysis and design (OOA/D) through three iterations of two cohesive, start-to-finish case studies. These case studies incrementally introduce key skills, essential OO principles and patterns, UML notation, and best practices. You won’t just learn UML diagrams - you’ll learn how to apply UML in the context of OO software development.Drawing on his unsurpassed experience as a mentor and consultant, Larman helps you understand evolutionary requirements and use cases, domain object modeling, responsibility-driven design, essential OO design, layered architectures, “Gang of Four” design patterns, GRASP, iterative methods, an agile approach to the Unified Process (UP), and much more. This edition’s extensive improvements include:- A stronger focus on helping you master OOA/D through case studies that demonstrate key OO principles and patterns, while also applying the UML- New coverage of UML 2, Agile Modeling, Test-Driven Development, and refactoring- Many new tips on combining iterative and evolutionary development with OOA/D- Updates for easier study, including new learning aids and graphics- New college educator teaching resources- Guidance on applying the UP in a light, agile spirit, complementary with other iterative methods such as XP and Scrum- Techniques for applying the UML to documenting architectures- A new chapter on evolutionary requirements, and much moreApplying UML and Patterns, Third Edition, is a lucid and practical introduction to thinking and designing with objects - and creating systems that are well crafted, robust, and maintainable.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Computer Systems: A Programmer's Perspective


Randal E. Bryant - 2002
    Often, computer science and computer engineering curricula don't provide students with a concentrated and consistent introduction to the fundamental concepts that underlie all computer systems. Traditional computer organization and logic design courses cover some of this material, but they focus largely on hardware design. They provide students with little or no understanding of how important software components operate, how application programs use systems, or how system attributes affect the performance and correctness of application programs. - A more complete view of systems - Takes a broader view of systems than traditional computer organization books, covering aspects of computer design, operating systems, compilers, and networking, provides students with the understanding of how programs run on real systems. - Systems presented from a programmers perspective - Material is presented in such a way that it has clear benefit to application programmers, students learn how to use this knowledge to improve program performance and reliability. They also become more effective in program debugging, because t

PYTHON: PROGRAMMING: A BEGINNER’S GUIDE TO LEARN PYTHON IN 7 DAYS


Ramsey Hamilton - 2016
    Python is a beautiful computer language. It is simple, and it is intuitive. Python is used by a sorts of people – data scientists use it for much of their number crunching and analytics; security testers use it for testing out security and IT attacks; it is used to develop high-quality web applications and many of the large applications that you use on the internet are also written in Python, including YouTube, DropBox, and Instagram. Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble.Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble. In this book you'll learn: Setting Up Your Environment Let’s Get Programming Variables and Programs in Files Loops, Loops and More Loops Functions Dictionaries, Lists, and Tuples The “for” Loop Classes Modules File Input/Output Error Handling and much more! Now it's time for you to start your journey into Python programming! Click on the Buy Now button above and get started today!