Young Einstein: And the story of E=mc² (Kindle Single)
Robyn Arianrhod - 2014
But what sort of person was the young Albert Einstein, before he became universally acclaimed as the archetypal genius? And how did his genius unfold? In this brilliant new Kindle Single, scientist Robyn Arianrhod blends biography with popular science to tell the story of how young Albert developed a theory that – unknown to him at first – contained the seeds of his extraordinary equation E = mc2. Arianrhod, who wrote her PhD on Einstein’s general theory of relativity, makes the ideas behind the equation accessible to the lay reader, and sets young Einstein’s exploration of these ideas against the backdrop of his first loves, his family and marriage, and, above all, his childlike wonder at the nature of the universe. She introduces his heroes and scientific inspirations, and the friends who believed in him when no one else did. In personalising Einstein, she brings to life both the man and his science, in a short, easy-to-read narrative. In showing how he discovered his famous equation, and what it means, she draws a compelling portrait of this prodigious intellect whose unfathomable grasp of the building blocks of physics would change our world forever. About the Author: Dr Robyn Arianrhod is the author of two critically acclaimed works of popular science and scientific history: Einstein’s Heroes: Imagining the World Through the Language of Mathematics, and Seduced by Logic: Émilie du Châtelet, Mary Somerville and the Newtonian Revolution. Both were shortlisted for major book awards and are published in the USA. Einstein’s Heroes was translated into several languages. Robyn was awarded her PhD for research on Einstein’s general theory of relativity and has lectured in applied mathematics (including special relativity) for many years. She is currently an Adjunct Research Fellow in the School of Mathematical Sciences at Monash University in Melbourne, where she is undertaking research on the structure of relativistic space-times. She is also a technical reviewer for the American Mathematical Society. Praise for Robyn Arianrhod's books: Einstein’s Heroes ‘Arianrhod’s achievement is to so masterfully combine history, biography, and mathematics as to absorb and enlighten even the mathematically maladroit’ – Booklist ‘An intriguing blend of science, history, and biography . . . Arianrhod’s well-written, fascinating discussion of intertwined topics is highly recommended’ – Library Journal (starred review) ‘A thrilling story . . . Arianrhod brings out the human side of the scientists’ – Bloombergnews ‘Offers readers an engaging intellectual exercise combining physics, language, mathematics, and biography’ – Science News Seduced by Logic ‘Seduced by Logic offers the lay reader an easy and agreeable introduction to the evolution of some crucial scientific debates . . . One cannot help be captivated by her intellectual honesty and enthusiasm’ – Times Higher Education ‘An elegant and inspiring history of how scientific revolutions make their way’ – Edward Dolnick, The Clockwork Universe ‘Here is a skillfully written tapestry of the science, history and portrayal of two of the most charismatic women of mathematical science. Robyn Arianrhod has produced a captivating masterpiece’ – Joseph Mazur, author of Euclid in the Rainforest and What’s Luck Got to Do with It?
Fact or Fiction: Science Tackles 58 Popular Myths
Scientific American - 2013
Drawing from Scientific American's "Fact or Fiction" and "Strange But True" columns, we've selected fifty-eight of the most surprising, fascinating, useful, and just plain wacky topics confronted by our writers over the years.
Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe
Evalyn Gates - 2009
Dark matter. These strange and invisible substances don't just sound mysterious: their unexpected appearance in the cosmic census is upending long-held notions about the nature of the Universe. Astronomers have long known that the Universe is expanding, but everything they could see indicated that gravity should be slowing this spread. Instead, it appears that the Universe is accelerating its expansion and that something stronger than gravity--dark energy--is at work. In Einstein's Telescope Evalyn Gates, a University of Chicago astrophysicist, transports us to the edge of contemporary science to explore the revolutionary tool that unlocks the secrets of these little-understood cosmic constituents. Based on Einstein's theory of general relativity, gravitational lensing, or "Einstein's Telescope," is enabling new discoveries that are taking us toward the next revolution in scientific thinking--one that may change forever our notions of where the Universe came from and where it is going.
Principles of Physics
David Halliday - 2010
A number of the key figures in the new edition are revised to provide a more inviting and informative treatment. The figures are broken into component parts with supporting commentary so that they can more readily see the key ideas. Material from The Flying Circus is incorporated into the chapter opener puzzlers, sample problems, examples and end-of-chapter problems to make the subject more engaging. Checkpoints enable them to check their understanding of a question with some reasoning based on the narrative or sample problem they just read. Sample Problems also demonstrate how engineers can solve problems with reasoned solutions.
We Have No Idea: A Guide to the Unknown Universe
Jorge Cham - 2017
While they're at it, they helpfully demystify many complicated things we do know about, from quarks and neutrinos to gravitational waves and exploding black holes. With equal doses of humor and delight, they invite us to see the universe as a vast expanse of mostly uncharted territory that's still ours to explore.This entertaining illustrated science primer is the perfect book for anyone who's curious about all the big questions physicists are still trying to answer.
The Wizard of Quarks: A Fantasy of Particle Physics
Robert Gilmore - 2000
This time physicist Robert Gilmore takes us on a journey with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the Wizard of Oz story, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in an atomic garden, where atoms and molecules are produced. See how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles.
What We Cannot Know: Explorations at the Edge of Knowledge
Marcus du Sautoy - 2016
But are there limits to what we can discover about our physical universe?In this very personal journey to the edges of knowledge, Marcus du Sautoy investigates how leading experts in fields from quantum physics and cosmology, to sensory perception and neuroscience, have articulated the current lie of the land. In doing so, he travels to the very boundaries of understanding, questioning contradictory stories and consulting cutting edge data.Is it possible that we will one day know everything? Or are there fields of research that will always lie beyond the bounds of human comprehension? And if so, how do we cope with living in a universe where there are things that will forever transcend our understanding?In What We Cannot Know, Marcus du Sautoy leads us on a thought-provoking expedition to the furthest reaches of modern science. Prepare to be taken to the edge of knowledge to find out if there’s anything we truly cannot know.
The Neanderthals: The History of the Extinct Humans Who Were Contemporaries of Homo Sapiens in Europe
Charles River Editors - 2018
This seems to have been the case even from the first recognition of the Neanderthals as a species. The first Neanderthal fossil discovery was that of a child’s skull in Belgium in 1829, but it was badly damaged. Another would be discovered in 1856 in a limestone mine of the Neanderthal region of what is present-day Germany, and a skull with differing distinct traits (indicating a different species than the Neanderthals) would be discovered just over a decade later in southwestern France. The latter specimen would come to be recognized as an example of the species Homo Sapiens, and these anatomically modern humans arrived in Europe between 45,000 and 43,000 years ago, around the time the Neanderthals are believed to started going extinct. The Neanderthals are a member of the genus Homo just like Homo sapiens and share roughly 99.7% of their DNA with modern humans (Reynolds and Gallagher 2012). Both species even lived briefly during the same time in Eurasia. However, the Neanderthals evolved separately in Europe, away from modern humans, who evolved in Africa. Physically, the Neanderthal skeleton was much more robust, suggesting that there was more room for muscle attachment. However, while Neanderthals were stronger than modern humans, the average height of the Neanderthal male was shorter, standing at only about 5’5 tall. Other physical characteristics that set the Neanderthals apart from modern humans were certain skull traits. The skull in general was low and elongated, featuring a sloping forehead with an occipital bun (a bone projection at the back of the skull), whereas modern humans have a more vertical forehead with no occipital bun. The cranial capacity of the Neanderthal skull was also greater than the modern human at 1,500–1,740 cc, and it lacked a chin and had more circular eye orbits, in contrast to Homo sapiens, which have a chin and tend to feature more rectangular eye orbits (Wolpoff 1999). Despite these differences, the Neanderthals may have been recognizable enough to interact with Homo sapiens or even blend in with Homo sapiens for the thousands of years they lived together in Europe. The Neanderthals lived in Europe and Asia for nearly 200,000 years and thrived in these regions, but they went extinct between 40,000 and 30,000 years ago, around the same time that modern humans began arriving in Europe. This has prompted much speculation as to the nature of the interactions between Neanderthals and Homo sapiens, especially since some researchers believe they interacted with each other for over 5,000 years before the Neanderthals began going extinct at different times across Europe. One hypothesis is that Homo sapiens displaced the Neanderthals and were better suited for the environment, and it is obviously possible if not likely that these two groups had become competitors for food and other resources, with Homo sapiens being more successful in the end. If such close interactions were taking place, there is also a possibility that the relatively new-to-Europe Homo sapiens brought pathogens from Africa with them that were unknown to the Neanderthal’s immune system. A more recent example of this type of resulting interaction is the European expansion into the Americas, which brought diseases like smallpox that the natives of America had never experienced before, especially diseases resulting from the domestication of animals. It is possible that the domestication of the dog by Homo sapiens may have contributed in spreading foreign diseases among the Neanderthals.
Eternity: God, Soul, New Physics
Trevelyan - 2013
This is a book about how many of the 'big' philosophical and religious questions that have puzzled mankind for centuries can be answered by recent breakthroughs in science.
Natural-Born Cyborgs: Minds, Technologies, and the Future of Human Intelligence
Andy Clark - 2003
But philosopher and cognitive scientist Andy Clark sees it differently. Cyborgs, he writes, are not something to be feared--we already are cyborgs. In Natural-Born Cyborgs, Clark argues that what makes humans so different from other species is our capacity to fully incorporate tools and supporting cultural practices into our existence. Technology as simple as writing on a sketchpad, as familiar as Google or a cellular phone, and as potentially revolutionary as mind-extending neural implants--all exploit our brains' astonishingly plastic nature. Our minds are primed to seek out and incorporate non-biological resources, so that we actually think and feel through our best technologies. Drawing on his expertise in cognitive science, Clark demonstrates that our sense of self and of physical presence can be expanded to a remarkable extent, placing the long-existing telephone and the emerging technology of telepresence on the same continuum. He explores ways in which we have adapted our lives to make use of technology (the measurement of time, for example, has wrought enormous changes in human existence), as well as ways in which increasingly fluid technologies can adapt to individual users during normal use. Bio-technological unions, Clark argues, are evolving with a speed never seen before in history. As we enter an age of wearable computers, sensory augmentation, wireless devices, intelligent environments, thought-controlled prosthetics, and rapid-fire information search and retrieval, the line between the user and her tools grows thinner day by day. This double whammy of plastic brains and increasingly responsive and well-fitted tools creates an unprecedented opportunity for ever-closer kinds of human-machine merger, he writes, arguing that such a merger is entirely natural. A stunning new look at the human brain and the human self, Natural Born Cyborgs reveals how our technology is indeed inseparable from who we are and how we think.
Astrophysics: A Very Short Introduction
James Binney - 2016
It enables us to understand the structure and evolution of planetary systems, stars, galaxies, interstellar gas, and the cosmos as a whole.In this Very Short Introduction, the leading astrophysicist James Binney shows how the field of astrophysics has expanded rapidly in the past century, with vast quantities of data gathered by telescopes exploiting all parts of the electromagnetic spectrum, combined with the rapid advance of computing power, which has allowed increasingly effective mathematical modelling. He illustrates how the application of fundamental principles of physics - the consideration of energy and mass, and momentum - and the two pillars of relativity and quantum mechanics, has provided insights into phenomena ranging from rapidly spinning millisecond pulsars to the collision of giant spiral galaxies. This is a clear, rigorous introduction to astrophysics for those keen to cut their teeth on a conceptual treatment involving some mathematics.ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable
Calculating the Cosmos: How Mathematics Unveils the Universe
Ian Stewart - 2016
He describes the architecture of space and time, dark matter and dark energy, how galaxies form, why stars implode, how everything began, and how it's all going to end. He considers parallel universes, the fine-tuning of the cosmos for life, what forms extraterrestrial life might take, and the likelihood of life on Earth being snuffed out by an asteroid.Beginning with the Babylonian integration of mathematics into the study of astronomy and cosmology, Stewart traces the evolution of our understanding of the cosmos: How Kepler's laws of planetary motion led Newton to formulate his theory of gravity. How, two centuries later, tiny irregularities in the motion of Mars inspired Einstein to devise his general theory of relativity. How, eighty years ago, the discovery that the universe is expanding led to the development of the Big Bang theory of its origins. How single-point origin and expansion led cosmologists to theorize new components of the universe, such as inflation, dark matter, and dark energy. But does inflation explain the structure of today's universe? Does dark matter actually exist? Could a scientific revolution that will challenge the long-held scientific orthodoxy and once again transform our understanding of the universe be on the way? In an exciting and engaging style, Calculating the Cosmos is a mathematical quest through the intricate realms of astronomy and cosmology.
The Case Against Reality: Why Evolution Hid the Truth from Our Eyes
Donald D. Hoffman - 2019
How can it be possible that the world we see is not objective reality? And how can our senses be useful if they are not communicating the truth? Hoffman grapples with these questions and more over the course of this eye-opening work.Ever since Homo sapiens has walked the earth, natural selection has favored perception that hides the truth and guides us toward useful action, shaping our senses to keep us alive and reproducing. We observe a speeding car and do not walk in front of it; we see mold growing on bread and do not eat it. These impressions, though, are not objective reality. Just like a file icon on a desktop screen is a useful symbol rather than a genuine representation of what a computer file looks like, the objects we see every day are merely icons, allowing us to navigate the world safely and with ease.The real-world implications for this discovery are huge. From examining why fashion designers create clothes that give the illusion of a more “attractive” body shape to studying how companies use color to elicit specific emotions in consumers, and even dismantling the very notion that spacetime is objective reality, The Case Against Reality dares us to question everything we thought we knew about the world we see.
Understanding Thermodynamics
Hendrick C. Van Ness - 1983
Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.
Bang!: The Complete History of the Universe
Brian May - 2006
He's certainly been thinking about it lately. May, a freshly minted astrophysics Ph.D., joins forces with legendary astronomer Patrick Moore and astrophysicist Chris Lintott in Bang! to consider the history of the universe from the Big Bang to Heat Death.Space, time, and matter were birthed 13.7 billion years ago and will continue on longer than we are able to comprehend. Infinitesimally small at first, the Universe is immense and ever expanding. Bang! explains how it all started, takes you on a tour of what is known about the evolution of the Universe, and posits how the end of time will come about.This fascinating book includes photographs, short biographies of key figures, an at-a-glance timeline, a glossary of terms, and suggested resources for further exploration.Based on the work of history’s most brilliant scientific minds, this amazing story features clear, straightforward discussions of the most perplexing and compelling aspects of existence—from the formation of stars, planets, and other galactic bodies to black holes, quasars, anti-matter, and dark matter to the emergence of life and the possibility that it could exist elsewhere.Pick up a copy of Bang! It will, it will rock you.