Book picks similar to
Dance of the Photons: From Einstein to Quantum Teleportation by Anton Zeilinger
science
physics
non-fiction
nonfiction
Fields of Color: The theory that escaped Einstein
Rodney A. Brooks - 2010
QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.
Cosmos
Carl Sagan - 1980
In the book, Sagan explores 15 billion years of cosmic evolution and the development of science and civilization. Cosmos traces the origins of knowledge and the scientific method, mixing science and philosophy, and speculates to the future of science. The book also discusses the underlying premises of science by providing biographical anecdotes about many prominent scientists throughout history, placing their contributions into the broader context of the development of modern science.The book covers a broad range of topics, comprising Sagan's reflections on anthropological, cosmological, biological, historical, and astronomical matters from antiquity to contemporary times. Sagan reiterates his position on extraterrestrial life—that the magnitude of the universe permits the existence of thousands of alien civilizations, but no credible evidence exists to demonstrate that such life has ever visited earth.
Life Ascending: The Ten Great Inventions of Evolution
Nick Lane - 2009
Comparing gene sequences, examining atomic structures of proteins, and looking into the geochemistry of rocks have helped explain evolution in more detail than ever before. Nick Lane expertly reconstructs the history of life by describing the ten greatest inventions of evolution (including DNA, photosynthesis, sex, and sight), based on their historical impact, role in organisms today, and relevance to current controversies. Who would have guessed that eyes started off as light-sensitive spots used to calibrate photosynthesis in algae? Or that DNA’s building blocks form spontaneously in hydrothermal vents? Lane gives a gripping, lucid account of nature’s ingenuity, and the result is a work of essential reading for anyone who has ever pondered or questioned the science underlying evolution’s greatest gifts to man.
The End of Time: The Next Revolution in Our Understanding of the Universe
Julian Barbour - 1999
Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless `nows'. In The End of Time, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity - which denies the existence of a unique time - and quantum mechanics - which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. The End of Time is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.
Coming of Age in the Milky Way
Timothy Ferris - 1988
From the first time mankind had an inkling of the vast space that surrounds us, those who study the universe have had to struggle against political and religious preconceptions. They have included some of the most charismatic, courageous, and idiosyncratic thinkers of all time. In Coming of Age in the Milky Way, Timothy Ferris uses his unique blend of rigorous research and captivating narrative skill to draw us into the lives and minds of these extraordinary figures, creating a landmark work of scientific history.
Neutrino
Frank Close - 2010
These tiny, ghostly particles are formed by the billions in stars and pass through us constantly, unseen, at almost the speed of light. Yet half a century after their discovery, we still know less about them than all the other varieties of matter that have ever been seen. In this engaging, concise volume, renowned scientist and popular writer Frank Close gives a vivid account of the discovery of neutrinos and our growing understanding of their significance, also touching on some speculative ideas concerning the possible uses of neutrinos and their role in the early universe. Close begins with the early history of the discovery of radioactivity by Henri Becquerel and Marie and Pierre Curie, the early model of the atom by Ernest Rutherford, and problems with these early atomic models, and Wolfgang Pauli's solution to that problem by inventing the concept of neutrino (named by Enrico Fermi, neutrino being Italian for little neutron). The book describes how the confirmation of Pauli's theory didn't occur until 1956, when Clyde Cowan and Fred Reines detected neutrinos, and reveals that the first natural neutrinos were finally detected by Reines in 1965 (before that, they had only been detected in reactors or accelerators). Close takes us to research experiments miles underground that are able to track neutrinos' fleeting impact as they pass through vast pools of cadmium chloride and he explains why they are becoming of such interest to cosmologists--if we can track where a neutrino originated we will be looking into the far distant reaches of the universe. In telling the story of the neutrino, Close offers a fascinating portrait of a strand of modern physics that sheds light on everything from the workings of the atom and the power of the sun.
Quantum: A Guide for the Perplexed
Jim Al-Khalili - 2003
Marvel at the Dual Slit experiment as a tiny atom passes through 2 separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Inventing Ourselves: The Secret Life of the Teenage Brain
Sarah-Jayne Blakemore - 2016
And yet, until very recently, scientists believed our brains were fully developed from childhood on. Now, thanks to imaging technology that enables us to look inside the living human brain at all ages, we know that this isn't so. Professor Sarah-Jayne Blakemore, one of the world's leading researchers into adolescent neurology, explains precisely what is going on in the complex and fascinating brains of teenagers--namely that the brain goes on developing and changing right through adolescence--with profound implications for the adults these young people will become.Drawing from cutting-edge research, including her own, Blakemore shows:How an adolescent brain differs from those of children and adultsWhy problem-free kids can turn into challenging teensWhat drives the excessive risk-taking and all-consuming relationships common among teenagersAnd why many mental illnesses--depression, addiction, schizophrenia--present during these formative yearsBlakemore's discoveries have transformed our understanding of the teenage mind, with consequences for law, education policy and practice, and, most of all, parents.
Einstein and the Quantum: The Quest of the Valiant Swabian
A. Douglas Stone - 2013
Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light--the core of what we now know as quantum theory--than he did about relativity.A compelling blend of physics, biography, and the history of science, "Einstein and the Quantum" shares the untold story of how Einstein--not Max Planck or Niels Bohr--was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrodinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.A book unlike any other, "Einstein and the Quantum" offers a completely new perspective on the scientific achievements of the greatest intellect of the twentieth century, showing how Einstein's contributions to the development of quantum theory are more significant, perhaps, than even his legendary work on relativity.
Professor Stewart's Cabinet of Mathematical Curiosities
Ian Stewart - 2008
This book reveals the most exhilarating oddities from Professor Stewart's legendary cabinet.Inside, you will find hidden gems of logic, geometry, and probability-like how to extract a cherry from a cocktail glass (harder than you think), a pop-up dodecahedron, and the real reason why you can't divide anything by zero. Scattered among these are keys to Fermat's last theorem, the Poincaréonjecture, chaos theory, and the P=NP problem (you'll win a million dollars if you solve it). You never know what enigmas you'll find in the Stewart cabinet, but they're sure to be clever, mind-expanding, and delightfully fun.
Storm in a Teacup: The Physics of Everyday Life
Helen Czerski - 2017
Czerski provides the tools to alter the way we see everything around us by linking ordinary objects and occurrences, like popcorn popping, coffee stains, and fridge magnets, to big ideas like climate change, the energy crisis, or innovative medical testing. She provides answers to vexing questions: How do ducks keep their feet warm when walking on ice? Why does it take so long for ketchup to come out of a bottle? Why does milk, when added to tea, look like billowing storm clouds? In an engaging voice at once warm and witty, Czerski shares her stunning breadth of knowledge to lift the veil of familiarity from the ordinary.
The Fabric of Reality: The Science of Parallel Universes--and Its Implications
David Deutsch - 1996
Taken literally, it implies that there are many universes “parallel” to the one we see around us. This multiplicity of universes, according to Deutsch, turns out to be the key to achieving a new worldview, one which synthesizes the theories of evolution, computation, and knowledge with quantum physics. Considered jointly, these four strands of explanation reveal a unified fabric of reality that is both objective and comprehensible, the subject of this daring, challenging book. The Fabric of Reality explains and connects many topics at the leading edge of current research and thinking, such as quantum computers (which work by effectively collaborating with their counterparts in other universes), the physics of time travel, the comprehensibility of nature and the physical limits of virtual reality, the significance of human life, and the ultimate fate of the universe. Here, for scientist and layperson alike, for philosopher, science-fiction reader, biologist, and computer expert, is a startlingly complete and rational synthesis of disciplines, and a new, optimistic message about existence.
Introducing Quantum Theory: A Graphic Guide
J.P. McEvoy - 1992
At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.
Supersymmetry: Unveiling The Ultimate Laws Of Nature
Gordon L. Kane - 2000
In this groundbreaking work, renowned physicist Gordon Kane first gives us the basics of the Standard Model, which describes the fundamental constituents and forces of nature. He then explains the next great leap in understanding: the theory of supersymmetry, which implies that each of the fundamental particles has a "superpartner" that can be detected at energies and intensities only now being achieved in the giant accelerators. If Kane and his colleagues are correct, these superpartners will also help solve many of the puzzles of modern physics-such as the existence of the Higgs boson-as well as one of the biggest mysteries is cosmology: the notorious "dark matter" of the universe.