Flask Web Development: Developing Web Applications with Python
Miguel Grinberg - 2014
With this hands-on book, you’ll learn Flask from the ground up by developing a complete social blogging application step-by-step. Author Miguel Grinberg walks you through the framework’s core functionality, and shows you how to extend applications with advanced web techniques such as database migration and web service communication.Rather than impose development guidelines as other frameworks do, Flask leaves the business of extensions up to you. If you have Python experience, this book shows you how to take advantage of that creative freedom.- Learn Flask’s basic application structure and write an example app- Work with must-have components—templates, databases, web forms, and email support- Use packages and modules to structure a large application that scales- Implement user authentication, roles, and profiles- Build a blogging feature by reusing templates, paginating item lists, and working with rich text- Use a Flask-based RESTful API to expose app functionality to smartphones, tablets, and other third-party clients- Learn how to run unit tests and enhance application performance- Explore options for deploying your web app to a production server
Docker in Action
Jeff Nickoloff - 2015
Create a tiny virtual environment, called a container, for your application that includes only its particular set of dependencies. The Docker engine accounts for, manages, and builds these containers through functionality provided by the host operating system. Software running inside containers share the Linux OS and other resources, such as libraries, making their footprints radically smaller, and the containerized applications are easy to install, manage, and remove. Developers can package their applications without worrying about environment-specific deployment concerns, and the operations team gets cleaner, more efficient systems across the board. Better still, Docker is free and open source.Docker in Action teaches readers how to create, deploy, and manage applications hosted in Docker containers. The book starts with a clear explanation of the Docker model of virtualization, comparing this approach to the traditional hypervisor model. Developers will learn how to package applications in containers, including specific techniques for testing and distributing applications via Docker Hub and other registries. Readers will learn how to take advantage of the Linux OS features that Docker uses to run programs securely, and how to manage shared resources. Using carefully-designed examples, the book teaches you how to orchestrate containers and applications from installation to removal. Along the way, you'll learn techniques for using Docker on systems ranging from your personal dev-and-test machine to full-scale cloud deployments.
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
In Our Own Image: Savior or Destroyer? The History and Future of Artificial Intelligence
George Zarkadakis - 2016
He traces AI's origins in ancient myth, through literary classics like Frankenstein, to today's sci-fi blockbusters, arguing that a fascination with AI is hardwired into the human psyche. He explains AI's history, technology, and potential; its manifestations in intelligent machines; its connections to neurology and consciousness, as well as—perhaps most tellingly—what AI reveals about us as human beings.In Our Own Image argues that we are on the brink of a fourth industrial revolution—poised to enter the age of Artificial Intelligence as science fiction becomes science fact. Ultimately, Zarkadakis observes, the fate of AI has profound implications for the future of science and humanity itself.
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Machine Learning in Action
Peter Harrington - 2011
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
Short Story Collections by Stanislaw Lem: The Cyberiad, Tales of Pirx the Pilot, the Star Diaries
Books LLC - 2010
Source: Wikipedia. Pages: 20. Not illustrated. Free updates online. Purchase includes a free trial membership in the publisher's book club where you can select from more than a million books without charge. Excerpt: The Cyberiad (Polish: ) is a series of short stories by Stanisaw Lem. The Polish version was first published in 1967, with an English translation appearing in 1974. The main protagonists of the series are Trurl and Klapaucius, the "constructors." The vast majority of characters are either robots, or intelligent machines. The stories focus on problems of the individual and society, as well as on the vain search for human happiness through technological means. Two of these stories were included in the book The Mind's I. Trurl and Klapaucius are brilliant (robotic) engineers, called "constructors" (because they can construct practically anything at will), capable of almost God-like exploits. For instance, on one occasion Trurl creates an entity capable of extracting accurate information from the random motion of gas particles, which he calls a "Demon of the Second Kind." He describes the "Demon of the First Kind" as a Maxwell's demon. On another, the two constructors re-arrange stars near their home planet in order to advertise. The duo are best friends and rivals. When they are not busy constructing revolutionary mechanisms at home, they travel the universe, aiding those in need. Although the characters are firmly established as good and righteous, they take no shame in accepting handsome rewards for their services. If rewards were promised and not delivered, the constructors may even severely punish those who deceived them. The universe of The Cyberiad is pseudo-Medieval. There are kingdoms, knights, princesses, and even dragons in abundance. Robots are usually anthropomorphic, to the point of being divided into sexes. Love and marriage are possibl...More: http: //booksllc.net/?id=59380
Artificial Intelligence: Structures and Strategies for Complex Problem Solving
George F. Luger - 1997
It is suitable for a one or two semester university course on AI, as well as for researchers in the field.
Mining of Massive Datasets
Anand Rajaraman - 2011
This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Machine Learning: A Probabilistic Perspective
Kevin P. Murphy - 2012
Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Computer Power and Human Reason: From Judgment to Calculation
Joseph Weizenbaum - 1976
A classic text by the author who developed ELIZA, a natural-language processing system.
The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge
William Poundstone - 1984
Topics include the limits of knowledge, paradox of complexity, Maxwell's demon, Big Bang theory, much more. 1985 edition.
Grokking Deep Learning
Andrew W. Trask - 2017
Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.