Science and Hypothesis


Henri Poincaré - 1902
    Explaining how such basic concepts as number and magnitude, space and force were developed, the great French mathematician refutes the skeptical position that modern scientific method and its results are wholly factitious. The places of rigorous logic and intuitive leaps are both established by an analysis of contrasting methods of idea-creation in individuals and in modern scientific traditions. The nature of hypothesis and the role of probability are investigated with all of Poincaré's usual fertility of insight.Partial contents: On the nature of mathematical reasoning. Magnitude and experiment. Space: non-Euclidean geometrics, space and geometry, experiment and geometry. Force: classical mechanics, relative and absolute motion, energy and thermodynamics. Nature: hypotheses in physics, the theories of modern physics, the calculus of probabilities, optics and electricity, electro-dynamics."Poincaré's was the last man to take practically all mathematics, both pure and applied as his province. Few mathematicians have had the breadth of philosophic vision that Poincaré's had, and none is his superior in the gift of clear exposition." — Men of Mathematics, Eric Temple Bell, Professor of Mathematics, University of Cambridge

Against Method


Paul Karl Feyerabend - 1975
    He argues that the only feasible explanations of scientific successes are historical explanations, and that anarchism must now replace rationalism in the theory of knowledge.

Essential Philosophy: How to know what on earth is going on


Stefan Molyneux - 2018
    We cannot choose to avoid philosophy, we can only choose whether we understand it or not. Stefan Molyneux, host of Freedomain Radio – the largest and most popular philosophy show in the world, with over 600 million views and downloads – takes you on a spectacular journey through the most foundational philosophical questions of the ages, clearing up and clarifying the most thorny problems posed by philosophers throughout history: -How do we know what is real? -How do we know what is true? -How do we know what is right? -How do we know what is good? -How do we know we even have a choice? -How do we convince others? These are all questions that we – as individuals and societies – wrestle with every day. These questions have challenged, motivated and plagued mankind for thousands of years. “Essential Philosophy” answers these questions with rigourous, illuminating and entertaining logic, reasoning from deep first principles to spectacular final conclusions. There is no need for confusion, there is no need for despair, there is no need for fear – pick up this book now, absorb the true power of philosophy, and live a rational moral life to the fullest. And then, give “Essential Philosophy” to others, so that the world may one day live in reason and peace.

The Story of Us


Tim Urban - 2019
    I’m Tim. I’m a single cell in society’s body. U.S. society, to be specific.So let me explain why we’re here.As a writer and a generally thinky person, I’ve spent a lot of my life thinking about the society I live in, and societies in general. I’ve always imagined society as a kind of giant human—a living organism like each of us, only much bigger.When you’re a single cell in the body of a giant, it’s hard to understand what the giant’s doing, or why it is the way it is, because you can’t really zoom out and look at the whole thing all at once. But we do our best.The thing is, when I’ve recently tried to imagine what society might look like, I haven’t really been picturing this:Giant stick figure: "I am grown up."Based on what I see around me, in person and online, it seems like my society is actually more like this:Giant stick figure throwing a giant tantrum because their chocolate ice cream fell on the ground.Individual humans grow older as they age—but it kind of seems like the giant human I live in has been getting more childish each year that goes by.So I decided to write a blog post about this. But then something else happened.When I told people I was planning to write a post about society, and the way people are acting, and the way the media is acting, and the way the government is acting, and the way everyone else is acting, people kept saying the same thing to me.Don’t do it. Don’t touch it. Write about something else. Anything else. It’s just not worth it.They were right. With so many non-controversial topics to write about, why take on something so loaded and risk alienating a ton of readers? I listened to people’s warnings, and I thought about moving on to something else, but then I was like, “Wait what? I live inside a giant and the giant is having a six-year-old meltdown in the grocery store candy section and that’s a not-okay thing for me to talk about?”It hit me that what I really needed to write about was that—about why it’s perilous to write about society."

The Quantum Theory of Fields: Volume I, Foundations


Steven Weinberg - 1995
    This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence. The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories. The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter. This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area.

Conceptual Physics


Paul G. Hewitt - 1971
    Hewitt's text is famous for engaging readers with analogies and imagery from real-world situations that build a strong conceptual understanding of physical principles ranging from classical mechanics to modern physics. With this strong foundation, readers are better equipped to understand the equations and formulas of physics, and motivated to explore the thought-provoking exercises and fun projects in each chapter. Included in the package is the workbook. Mechanics, Properties of Matter, Heat, Sound, Electricity and Magnetism, Light, Atomic and Nuclear Physics, Relativity. For all readers interested in conceptual physics.

Philosophy of Science: A Very Short Introduction


Samir Okasha - 2002
    He also looks at philosophical issues in particular sciences, including the problem of classification in biology, and the nature of space and time in physics. The final chapter touches on the conflicts between science and religion, and explores whether science is ultimately a good thing.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Biggest Secrets


William Poundstone - 1993
    Fields Cookies... What backward messages on records are really trying to tell you... Frank Sinatra's real age... Why you can't counterfeit a lottery ticket... Barbra Streisand's blue movie... The other Boy Scout rituals... Ingmar Bergman's soap commercials... The formula for Play-Doh... and more.

Pendulum: Leon Foucault and the Triumph of Science


Amir D. Aczel - 2000
    By tracking a pendulum's path as it swung repeatedly across the interior of the large ceremonial hall, Foucault offered the first definitive proof -- before an audience that comprised the cream of Parisian society, including the future emperor, Napoleon III -- that the earth revolves on its axis.Through careful, primary research, world-renowned author Amir Aczel has revealed the life of a gifted physicist who had almost no formal education in science, and yet managed to succeed despite the adversity he suffered at the hands of his peers. The range and breadth of Foucault's discoveries is astonishing: He gave us the modern electric compass, devised an electric microscope, invented photographic technology, and made remarkable deductions about color theory, heat waves, and the speed of light. Yet until now so little has been known about his life.Richly detailed and evocative, Pendulum tells of the illustrious period in France during the Second Empire; of Foucault's relationship with Napoleon III, a colorful character in his own right; and -- most notably -- of the crucial triumph of science over religion.Dr. Aczel has crafted a fascinating narrative based on the life of this most astonishing and largely unrecognized scientist, whose findings answered many age-old scientific questions and posed new ones that are still relevant today.

The Logic of Scientific Discovery


Karl Popper - 1934
    It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)

Life After Death, Powerful Evidence You Will Never Die


Stephen Hawley Martin - 2015
    He spent two years gathering information that demonstrates this and along the way interviewed more than a hundred experts in a number of different fields. Among them were parapsychologists, medical doctors, psychologists, psychiatrists, quantum physicists, and researchers into the true nature of reality. Specific examples are presented that indicate what happens when we die, for example that memories can be formed and retained despite a subject’s brain having been shutdown and the blood drained from it. Questions such as whether or not you will be able to communicate with living loved ones after death are addressed, if it is possible to be reborn, and what might be missing from reproductive theory to explain the various phenomena indicated in the many case histories and scientific investigations presented. All of us will someday cross the border to what Shakespeare called "The undiscovered country." As long as we must make that trip, wouldn’t it be smart to find out where we are going and what to expect when we get there?

Cosmology: Philosophy & Physics


alexis karpouzos - 2015
    Cosmic Universe and Human History, microcosm and macrocosm, inorganic and living matter coexist and form a unique unity manifested in multiple forms. The Physical and the Mental constitute the form and the content of the World. The world does not consist of subjects and objects, the “subject” and the “object” are metaphysical abstractions of the single and indivisible Wholeness. Man’s finite knowledge separates the Whole into parts and studies fragmentarily the beings. The Wholeness is manifested in multiple forms and each form encapsulates the Wholeness. The rational explanation of the excerpts and the intuitive apprehension of the Wholeness are required to combine and create the open thought and the holistic knowledge. This means that the measurement should be defined by the ''measure'', but the responsibility for determining the ''measure'' depends on the man. This requires that man overcomes the anthropocentric arrogance and the narcissistic selfishness and he joins the Cosmic World in a friendly and creative manner.

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.

Fearful Symmetry: The Search for Beauty in Modern Physics


A. Zee - 1986
    A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how today's theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, the book describes the majestic sweep and accomplishments of twentieth-century physics. In the end, we stand in awe before the grand vision of modern physics--one of the greatest chapters in the intellectual history of humankind.

The Wizard of Quarks: A Fantasy of Particle Physics


Robert Gilmore - 2000
    This time physicist Robert Gilmore takes us on a journey with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the Wizard of Oz story, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in an atomic garden, where atoms and molecules are produced. See how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles.