Book picks similar to
Critical Code Studies by Mark C. Marino
technology
digital-culture
design_interactif
digital-poetics
Data Structures and Algorithm Analysis in C++
Mark Allen Weiss - 1993
Readers learn how to reduce time constraints and develop programs efficiently by analyzing the feasibility of an algorithm before it is coded. The C++ language is brought up-to-date and simplified, and the Standard Template Library is now fully incorporated throughout the text. This Third Edition also features significantly revised coverage of lists, stacks, queues, and trees and an entire chapter dedicated to amortized analysis and advanced data structures such as the Fibonacci heap. Known for its clear and friendly writing style, Data Structures and Algorithm Analysis in C++ is logically organized to cover advanced data structures topics from binary heaps to sorting to NP-completeness. Figures and examples illustrating successive stages of algorithms contribute to Weiss' careful, rigorous and in-depth analysis of each type of algorithm.
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
Machine Learning: A Probabilistic Perspective
Kevin P. Murphy - 2012
Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
The Dream Machine: J.C.R. Licklider and the Revolution That Made Computing Personal
M. Mitchell Waldrop - 2001
C. R. Licklider, whose visionary dream of a human-computer symbiosis transformed the course of modern science and led to the development of the personal computer. Reprint.
The Ethical Algorithm: The Science of Socially Aware Algorithm Design
Michael Kearns - 2019
Algorithms have made our lives more efficient, more entertaining, and, sometimes, better informed. At the same time, complex algorithms are increasingly violating the basic rights of individual citizens. Allegedly anonymized datasets routinely leak our most sensitive personal information; statistical models for everything from mortgages to college admissions reflect racial and gender bias. Meanwhile, users manipulate algorithms to "game" search engines, spam filters, online reviewing services, and navigation apps.Understanding and improving the science behind the algorithms that run our lives is rapidly becoming one of the most pressing issues of this century. Traditional fixes, such as laws, regulations and watchdog groups, have proven woefully inadequate. Reporting from the cutting edge of scientific research, The Ethical Algorithm offers a new approach: a set of principled solutions based on the emerging and exciting science of socially aware algorithm design. Michael Kearns and Aaron Roth explain how we can better embed human principles into machine code - without halting the advance of data-driven scientific exploration. Weaving together innovative research with stories of citizens, scientists, and activists on the front lines, The Ethical Algorithm offers a compelling vision for a future, one in which we can better protect humans from the unintended impacts of algorithms while continuing to inspire wondrous advances in technology.
Windows Sysinternals Administrator's Reference
Mark E. Russinovich - 2009
Guided by Sysinternals creator Mark Russinovich and Windows expert Aaron Margosis, you’ll drill into the features and functions of dozens of free file, disk, process, security, and Windows management tools. And you’ll learn how to apply the book’s best practices to help resolve your own technical issues the way the experts do.Diagnose. Troubleshoot. Optimize.Analyze CPU spikes, memory leaks, and other system problems Get a comprehensive view of file, disk, registry, process/thread, and network activity Diagnose and troubleshoot issues with Active Directory® Easily scan, disable, and remove autostart applications and components Monitor application debug output Generate trigger-based memory dumps for application troubleshooting Audit and analyze file digital signatures, permissions, and other security information Execute Sysinternals management tools on one or more remote computers Master Process Explorer, Process Monitor, and Autoruns
Building Mobile Apps at Scale: 39 Engineering Challenges
Gergely Orosz - 2021
By scale, we mean having numbers of users in the millions and being built by large engineering teams.For mobile engineers, this book is a blueprint for modern app engineering approaches. For non-mobile engineers and managers, it is a resource with which to build empathy and appreciation for the complexity of world-class mobile engineering.
The Wealth of Networks: How Social Production Transforms Markets and Freedom
Yochai Benkler - 2006
The phenomenon he describes as social production is reshaping markets, while at the same time offering new opportunities to enhance individual freedom, cultural diversity, political discourse, and justice. But these results are by no means inevitable: a systematic campaign to protect the entrenched industrial information economy of the last century threatens the promise of today’s emerging networked information environment.In this comprehensive social theory of the Internet and the networked information economy, Benkler describes how patterns of information, knowledge, and cultural production are changing—and shows that the way information and knowledge are made available can either limit or enlarge the ways people can create and express themselves. He describes the range of legal and policy choices that confront us and maintains that there is much to be gained—or lost—by the decisions we make today.
Agile for Everybody: Creating Fast, Flexible, and Customer-First Organizations
Matt Lemay - 2018
This practical book demonstrates how entire organizations—from product managers and engineers to marketers and executives—can put Agile to work.
Author Matt LeMay explains Agile in clear, jargon-free terms and provides concrete and actionable steps to help any team put its values and principles into practice. Examples from a wide variety of organizations, including small nonprofits and global financial enterprises, bring to life the on-the-ground realities of Agile across industries and functions.
Understand exactly what Agile is and why it matters
Use Agile to address your organization’s specific needs and goals
Take customer centricity from theory into practice
Stop wasting time in "report and critique" meetings and start making better decisions
Create a harmonious cycle of learning, collaborating, and delivering
Learn from Agile experts at companies like IBM, Spotify, and Coca-Cola
Advanced Swift
Chris Eidhof - 2016
If you have read the Swift Programming Guide, and want to explore more, this book is for you.Swift is a great language for systems programming, but also lends itself for very high-level programming. We'll explore both high-level topics (for example, programming with generics and protocols), as well as low-level topics (for example, wrapping a C library and string internals).
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Common LISP: A Gentle Introduction to Symbolic Computation
David S. Touretzky - 1989
A LISP "toolkit" in each chapter explains how to use Common LISP programming and debugging tools such as DESCRIBE, INSPECT, TRACE and STEP.
Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge in Computing
Marie Hicks - 2017
By 1974, the British computer industry was all but extinct. What happened in the intervening thirty years holds lessons for all postindustrial superpowers. As Britain struggled to use technology to retain its global power, the nation's inability to manage its technical labor force hobbled its transition into the information age.In Programmed Inequality, Marie Hicks explores the story of labor feminization and gendered technocracy that undercut British efforts to computerize. That failure sprang from the government's systematic neglect of its largest trained technical workforce simply because they were women. Women were a hidden engine of growth in high technology from World War II to the 1960s. As computing experienced a gender flip, becoming male-identified in the 1960s and 1970s, labor problems grew into structural ones and gender discrimination caused the nation's largest computer user -- the civil service and sprawling public sector -- to make decisions that were disastrous for the British computer industry and the nation as a whole.Drawing on recently opened government files, personal interviews, and the archives of major British computer companies, Programmed Inequality takes aim at the fiction of technological meritocracy. Hicks explains why, even today, possessing technical skill is not enough to ensure that women will rise to the top in science and technology fields. Programmed Inequality shows how the disappearance of women from the field had grave macroeconomic consequences for Britain, and why the United States risks repeating those errors in the twenty-first century."
Artificial Intelligence and the Future of Power: 5 Battlegrounds
Rajiv Malhotra - 2021
To understand it fully, we must look beneath the surface. The positive side is that technology is making machines smarter. However, the deeper view explained in this book shows that AI is also making a growing number of people cognitively and psychologically dependent on digital networks. Whether you are a social media fanatic, a diehard AI aficionado, or a paranoid sceptic, it is impossible to escape the ubiquitous impact of AI. Artificial Intelligence is the brains bringing together quantum computing, nanotechnology, medical technology, brain-machine interface, robotics, aerospace, 5G, Internet of Things, and more. It is amplifying human ingenuity and disrupting the foundations of healthcare, military, entertainment, education, marketing and manufacturing.Artificial Intelligence and The Future of Power argues that this AI-driven revolution will have an unequal impact on different segments of humanity. There will be new winners and losers, new haves and have-nots, resulting in an unprecedented concentration of wealth and power. After analyzing society’s vulnerabilities to the impending tsunami, the book raises troubling questions that provoke immediate debate: Is the world headed toward digital colonization by USA and China? Will depopulation become eventually unavoidable?Artificial Intelligence and The Future of Power is a wakeup call to action, compelling public intellectuals to be better informed and more engaged. It educates the social segments most at risk and wants them to demand a seat at the table where policies on Artificial Intelligence are being formulated.