Book picks similar to
Trees by Jean-Pierre Serre
mathematics
math
textbooks
computer-science
Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers
Dan Rockmore - 2005
Now, at a moment when mathematicians are finally moving in on a proof, Dartmouth professor Dan Rockmore tells the riveting history of the hunt for a solution.In 1859 German professor Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the occurrence of the prime numbers. Rockmore takes us all the way from Euclid to the mysteries of quantum chaos to show how the Riemann hypothesis lies at the very heart of some of the most cutting-edge research going on today in physics and mathematics.
Mathematical Mysteries: The Beauty and Magic of Numbers
Calvin C. Clawson - 1996
This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.
Fundamental Methods of Mathematical Economics
Alpha C. Chiang - 1974
The book's patient explanations are written in an informal, non-intimidating style. To underscore the relevance of mathematics to economics, the author allows the economist's analytical needs to motivate the study of related mathematical techniques; he then illustrates these techniques with appropriate economics models. Graphic illustrations often visually reinforce algebraic results. Many exercise problems serve as drills and help bolster student confidence. These major types of economic analysis are covered: statics, comparative statics, optimization problems, dynamics, and mathematical programming. These mathematical methods are introduced: matrix algebra, differential and integral calculus, differential equations, difference equations, and convex sets.
Weird Math: A Teenage Genius and His Teacher Reveal the Strange Connections Between Math and Everyday Life
David Darling - 2018
As teen math prodigy Agnijo Banerjee and his teacher David Darling reveal, complex math surrounds us. If we think long enough about the universe, we're left not with material stuff, but a ghostly and beautiful set of equations. Packed with puzzles and paradoxes, mind-bending concepts, and surprising solutions, Weird Math leads us from a lyrical exploration of mathematics in our universe to profound questions about God, chance, and infinity. A magical introduction to the mysteries of math, it will entrance beginners and seasoned mathematicians alike.
Data Science
John D. Kelleher - 2018
Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges.It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Good Math: A Geek's Guide to the Beauty of Numbers, Logic, and Computation
Mark C. Chu-Carroll - 2013
There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular “Good Math” blog, you’ll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird.Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing.If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark’s book will both entertain and enlighten you.
Introduction to Algorithms: A Creative Approach
Udi Manber - 1989
The heart of this creative process lies in an analogy between proving mathematical theorems by induction and designing combinatorial algorithms. The book contains hundreds of problems and examples. It is designed to enhance the reader's problem-solving abilities and understanding of the principles behind algorithm design.
Visions of Infinity: The Great Mathematical Problems
Ian Stewart - 2013
Some of these problems are new, while others have puzzled and bewitched thinkers across the ages. Such challenges offer a tantalizing glimpse of the field's unlimited potential, and keep mathematicians looking toward the horizons of intellectual possibility.In Visions of Infinity, celebrated mathematician Ian Stewart provides a fascinating overview of the most formidable problems mathematicians have vanquished, and those that vex them still. He explains why these problems exist, what drives mathematicians to solve them, and why their efforts matter in the context of science as a whole. The three-century effort to prove Fermat's last theorem—first posited in 1630, and finally solved by Andrew Wiles in 1995—led to the creation of algebraic number theory and complex analysis. The Poincaré conjecture, which was cracked in 2002 by the eccentric genius Grigori Perelman, has become fundamental to mathematicians' understanding of three-dimensional shapes. But while mathematicians have made enormous advances in recent years, some problems continue to baffle us. Indeed, the Riemann hypothesis, which Stewart refers to as the “Holy Grail of pure mathematics,” and the P/NP problem, which straddles mathematics and computer science, could easily remain unproved for another hundred years.An approachable and illuminating history of mathematics as told through fourteen of its greatest problems, Visions of Infinity reveals how mathematicians the world over are rising to the challenges set by their predecessors—and how the enigmas of the past inevitably surrender to the powerful techniques of the present.
How to Prove It: A Structured Approach
Daniel J. Velleman - 1994
The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5
Einstein's Heroes: Imagining the World Through the Language of Mathematics
Robyn Arianrhod - 2004
Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.
Partial Differential Equations
Lawrence C. Evans - 1998
How to Build a Brain and 34 Other Really Interesting Uses of Maths
Richard Elwes - 2010
You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.
The Poincaré Conjecture: In Search of the Shape of the Universe
Donal O'Shea - 2007
He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
A Brief History of Mathematical Thought: Key concepts and where they come from
Luke Heaton - 2015
In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story.
The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations.
In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.