Machine Learning for Dummies


John Paul Mueller - 2016
    Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks.Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data--or anything in between--this guide makes it easier to understand and implement machine learning seamlessly.Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Microsoft Azure Essentials - Fundamentals of Azure


Michael S. Collier - 2015
     The first ebook in the series, Microsoft Azure Essentials: Fundamentals of Azure, introduces developers and IT professionals to the wide range of capabilities in Azure. The authors - both Microsoft MVPs in Azure - present both conceptual and how-to content for key areas, including: Azure Websites and Azure Cloud Services Azure Virtual Machines Azure Storage Azure Virtual Networks Databases Azure Active Directory Management tools Business scenarios Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the “Microsoft Azure Essentials” series.

The Little SAS Book: A Primer


Lora D. Delwiche - 1995
    This friendly, easy-to-read guide gently introduces you to the most commonly used features of SAS software plus a whole lot more! Authors Lora Delwiche and Susan Slaughter have revised the text to include concepts of the Output Delivery System; the STYLE= option in the PRINT, REPORT, and TABULATE procedures; ODS HTML, RTF, PRINTER, and OUTPUT destinations; PROC REPORT; more on PROC TABULATE; exporting data; and the colon modifier for informats. You'll find clear and concise explanations of basic SAS concepts (such as DATA and PROC steps), inputting data, modifying and combining data sets, summarizing and presenting data, basic statistical procedures, and debugging SAS programs. Each topic is presented in a self-contained, two-page layout complete with examples and graphics. This format enables new users to get up and running quickly, while the examples allow you to type in the program and see it work!

Introduction to Machine Learning


Ethem Alpaydin - 2004
    Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. "Introduction to Machine Learning" is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.

The Ethical Algorithm: The Science of Socially Aware Algorithm Design


Michael Kearns - 2019
    Algorithms have made our lives more efficient, more entertaining, and, sometimes, better informed. At the same time, complex algorithms are increasingly violating the basic rights of individual citizens. Allegedly anonymized datasets routinely leak our most sensitive personal information; statistical models for everything from mortgages to college admissions reflect racial and gender bias. Meanwhile, users manipulate algorithms to "game" search engines, spam filters, online reviewing services, and navigation apps.Understanding and improving the science behind the algorithms that run our lives is rapidly becoming one of the most pressing issues of this century. Traditional fixes, such as laws, regulations and watchdog groups, have proven woefully inadequate. Reporting from the cutting edge of scientific research, The Ethical Algorithm offers a new approach: a set of principled solutions based on the emerging and exciting science of socially aware algorithm design. Michael Kearns and Aaron Roth explain how we can better embed human principles into machine code - without halting the advance of data-driven scientific exploration. Weaving together innovative research with stories of citizens, scientists, and activists on the front lines, The Ethical Algorithm offers a compelling vision for a future, one in which we can better protect humans from the unintended impacts of algorithms while continuing to inspire wondrous advances in technology.

The Dream Machine: J.C.R. Licklider and the Revolution That Made Computing Personal


M. Mitchell Waldrop - 2001
    C. R. Licklider, whose visionary dream of a human-computer symbiosis transformed the course of modern science and led to the development of the personal computer. Reprint.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

The Tumor


John Grisham - 2015
    In this short book, he provides readers with a fictional account of how a real, new medical technology could revolutionize the future of medicine by curing with sound. THE TUMOR follows the present day experience of the fictional patient Paul, an otherwise healthy 35-year-old father who is diagnosed with a malignant brain tumor. Grisham takes readers through a detailed account of Paul’s treatment and his family’s experience that doesn’t end as we would hope. Grisham then explores an alternate future, where Paul is diagnosed with the same brain tumor at the same age, but in the year 2025, when a treatment called focused ultrasound is able to extend his life expectancy. Focused ultrasound has the potential to treat not just brain tumors, but many other disorders, including Parkinson’s, Alzheimer’s, hypertension, and prostate, breast and pancreatic cancer. For more information, you can visit The Focused Ultrasound Foundation’s website. Here you will find a video of Grisham on the TEDx stage with the Foundation’s chairman and a Parkinson’s patient who brings the audience to its feet sharing her incredible story of a focused ultrasound “miracle.” Readers will get a taste of the narrative they expect from Grisham, but this short book will also educate and inspire people to be hopeful about the future of medical innovation.

The Flat-Earth Conspiracy


Eric Dubay - 2014
    For almost 500 years, the masses have been thoroughly deceived by a cosmic fairy-tale of astronomical proportions. We have been taught a falsehood so gigantic and diabolical that it has blinded us from our own experience and common sense, from seeing the world and the universe as they truly are. Through pseudo-science books and programs, mass media and public education, universities and government propaganda, the world has been systematically brain-washed, slowly indoctrinated over centuries into the unquestioning belief of the greatest lie of all time. A multi-generational conspiracy has succeeded, in the minds of the masses, to pick up the fixed Earth, shape it into a ball, spin it in circles, and throw it around the Sun! The greatest cover-up of all time, NASA and Freemasonry's biggest secret, is that we are living on a plane, not a planet, that Earth is the flat, stationary center of the universe.

Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Data Jujitsu: The Art of Turning Data into Product


D.J. Patil - 2012
    Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to:Break down seemingly complex data problems into simplified partsUse alternative data analysis techniques to examine themUse human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.

PYTHON: PROGRAMMING: A BEGINNER’S GUIDE TO LEARN PYTHON IN 7 DAYS


Ramsey Hamilton - 2016
    Python is a beautiful computer language. It is simple, and it is intuitive. Python is used by a sorts of people – data scientists use it for much of their number crunching and analytics; security testers use it for testing out security and IT attacks; it is used to develop high-quality web applications and many of the large applications that you use on the internet are also written in Python, including YouTube, DropBox, and Instagram. Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble.Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble. In this book you'll learn: Setting Up Your Environment Let’s Get Programming Variables and Programs in Files Loops, Loops and More Loops Functions Dictionaries, Lists, and Tuples The “for” Loop Classes Modules File Input/Output Error Handling and much more! Now it's time for you to start your journey into Python programming! Click on the Buy Now button above and get started today!