Book picks similar to
Future Science: Essays from the Cutting Edge by Max Brockman
science
non-fiction
nonfiction
essays
The Singularity is Near: When Humans Transcend Biology
Ray Kurzweil - 2005
In his classic The Age of Spiritual Machines, he argued that computers would soon rival the full range of human intelligence at its best. Now he examines the next step in this inexorable evolutionary process: the union of human and machine, in which the knowledge and skills embedded in our brains will be combined with the vastly greater capacity, speed, and knowledge-sharing ability of our creations.
This Explains Everything: Deep, Beautiful, and Elegant Theories of How the World Works
John BrockmanSean Carroll - 2013
Why do we recognize patterns? Is there such a thing as positive stress? Are we genetically programmed to be in conflict with each other? Those are just some of the 150 questions that the world's best scientific minds answer with elegant simplicity.With contributions from Jared Diamond, Richard Dawkins, Nassim Taleb, Brian Eno, Steven Pinker, and more, everything is explained in fun, uncomplicated terms that make the most complex concepts easy to comprehend.
Visions: How Science Will Revolutionize the 21st Century
Michio Kaku - 1997
We will no longer be passive bystanders to the dance of the universe, but will become creative choreographers of matter, life, and intelligence.The first section of Visions presents a shocking look at a cyber-world infiltrated by millions of tiny intelligence systems. Part two illustrates how the decoding of DNA's genetic structure will allow humans the "godlike ability to manipulate life almost at will." Finally, VISIONS focuses on the future of quantum physics, in which physicists will perfect new ways to manipulate matter and harness the cosmic energy of the universe.What makes Michio Kaku's vision of the science of the future so compelling--and so different from the mere forecasts of most thinkers--is that it is based on the groundbreaking research taking place in labs today, as well as the consensus of over 150 of Kaku's scientific colleagues. Science, for all its breathtaking change, evolves slowly; we can accurately predict, asserts Kaku, what the direction of science will be, based on the paths that are being forged today.A thrilling, unique narrative that brings together the thinking of many of the world's most accomplished scientists to explore the world of the future, Visions is science writing at its best.
The Best American Science and Nature Writing 2013
Siddhartha Mukherjee - 2013
Pulitzer Prize–winning author Siddhartha Mukherjee, a leading cancer physician and researcher, selects the year’s top science and nature writing from journalists who dive into their fields with curiosity and passion, delivering must-read articles from a wide array of fields.
This Idea Is Brilliant: Lost, Overlooked, and Underappreciated Scientific Concepts Everyone Should Know
John Brockman - 2018
In that spirit, Edge.org publisher and author of Know This, John Brockman, asks 206 of the world’s most brilliant minds the 2017 Edge Question: What scientific term or concept ought to be more widely known?Contributors include: author of The God Delusion RICHARD DAWKINS on using animals’ “Genetic Book of the Dead” to reconstruct ecological history; MacArthur Fellow REBECCA NEWBERGER GOLDSTEIN on “scientific realism,” the idea that scientific theories explain phenomena beyond what we can see and touch; author of Seven Brief Lessons on Physics CARLO ROVELLI on “relative information,” which governs the physical world around us; theoretical physicist LAWRENCE M. KRAUSS on the hidden blessings of “uncertainty”; cognitive scientist and author of The Language Instinct STEVEN PINKER on “The Second Law of Thermodynamics”; biogerontologist AUBREY DE GREY on why “maladaptive traits” have been conserved evolutionarily; musician BRIAN ENO on “confirmation bias” in the internet age; Man Booker-winning author of Atonement IAN MCEWAN on the “Navier-Stokes Equations,” which govern everything from weather prediction to aircraft design and blood flow; plus pieces from RICHARD THALER, JARED DIAMOND, NICHOLAS CARR, JANNA LEVIN, LISA RANDALL, KEVIN KELLY, DANIEL COLEMAN, FRANK WILCZEK, RORY SUTHERLAND, NINA JABLONSKI, MARTIN REES, ALISON GOPNIK, and many, many others.
The Big Picture: On the Origins of Life, Meaning, and the Universe Itself
Sean Carroll - 2016
Where are we? Who are we? Are our emotions, our beliefs, and our hopes and dreams ultimately meaningless out there in the void? Does human purpose and meaning fit into a scientific worldview?In short chapters filled with intriguing historical anecdotes, personal asides, and rigorous exposition, readers learn the difference between how the world works at the quantum level, the cosmic level, and the human level--and then how each connects to the other. Carroll's presentation of the principles that have guided the scientific revolution from Darwin and Einstein to the origins of life, consciousness, and the universe is dazzlingly unique.Carroll shows how an avalanche of discoveries in the past few hundred years has changed our world and what really matters to us. Our lives are dwarfed like never before by the immensity of space and time, but they are redeemed by our capacity to comprehend it and give it meaning.The Big Picture is an unprecedented scientific worldview, a tour de force that will sit on shelves alongside the works of Stephen Hawking, Carl Sagan, Daniel Dennett, and E. O. Wilson for years to come.
Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies
Geoffrey B. West - 2017
The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses. Fascinated by issues of aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science, creating a new understanding of energy use and metabolism: West found that despite the riotous diversity in the sizes of mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. This speaks to everything from how long we can expect to live to how many hours of sleep we need. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism's body. West's work has been game-changing for biologists, but then he made the even bolder move of exploring his work's applicability to cities. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. For every doubling in a city's size, the city needs 15% less road, electrical wire, and gas stations to support the same population. More amazingly, for every doubling in size, cities produce 15% more patents and more wealth, as well as 15% more crime and disease. This broad pattern lays the groundwork for a new science of cities. Recently, West has applied his revolutionary work on cities and biological life to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune, however diverse and unrelated they are to each other.From the Hardcover edition.
The Upright Thinkers: The Human Journey from Living in Trees to Understanding the Cosmos
Leonard Mlodinow - 2015
Leonard Mlodinow takes us on a passionate and inspiring tour through the exciting history of human progress and the key events in the development of science. In the process, he presents a fascinating new look at the unique characteristics of our species and our society that helped propel us from stone tools to written language and through the birth of chemistry, biology, and modern physics to today’s technological world. Along the way he explores the cultural conditions that influenced scientific thought through the ages and the colorful personalities of some of the great philosophers, scientists, and thinkers: Galileo, who preferred painting and poetry to medicine and dropped out of university; Isaac Newton, who stuck needlelike bodkins into his eyes to better understand changes in light and color; and Antoine Lavoisier, who drank nothing but milk for two weeks to examine its effects on his body. Charles Darwin, Albert Einstein, Werner Heisenberg, and many lesser-known but equally brilliant minds also populate these pages, each of their stories showing how much of human achievement can be attributed to the stubborn pursuit of simple questions (why? how?), bravely asked. The Upright Thinkers is a book for science lovers and for anyone interested in creative thinking and in our ongoing quest to understand our world. At once deeply informed, accessible, and infused with the author’s trademark wit, this insightful work is a stunning tribute to humanity’s intellectual curiosity. (With black-and-white illustrations throughout.)
Brilliant Blunders: From Darwin to Einstein - Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe
Mario Livio - 2013
Nobody is perfect. And that includes five of the greatest scientists in history—Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. But the mistakes that these great luminaries made helped advance science. Indeed, as Mario Livio explains, science thrives on error, advancing when erroneous ideas are disproven.As a young scientist, Einstein tried to conceive of a way to describe the evolution of the universe at large, based on General Relativity—his theory of space, time, and gravity. Unfortunately he fell victim to a misguided notion of aesthetic simplicity. Fred Hoyle was an eminent astrophysicist who ridiculed an emerging theory about the origin of the universe that he dismissively called “The Big Bang.” The name stuck, but Hoyle was dead wrong in his opposition.They, along with Darwin (a blunder in his theory of Natural Selection), Kelvin (a blunder in his calculation of the age of the earth), and Pauling (a blunder in his model for the structure of the DNA molecule), were brilliant men and fascinating human beings. Their blunders were a necessary part of the scientific process. Collectively they helped to dramatically further our knowledge of the evolution of life, the Earth, and the universe.
Cosmos
Carl Sagan - 1980
In the book, Sagan explores 15 billion years of cosmic evolution and the development of science and civilization. Cosmos traces the origins of knowledge and the scientific method, mixing science and philosophy, and speculates to the future of science. The book also discusses the underlying premises of science by providing biographical anecdotes about many prominent scientists throughout history, placing their contributions into the broader context of the development of modern science.The book covers a broad range of topics, comprising Sagan's reflections on anthropological, cosmological, biological, historical, and astronomical matters from antiquity to contemporary times. Sagan reiterates his position on extraterrestrial life—that the magnitude of the universe permits the existence of thousands of alien civilizations, but no credible evidence exists to demonstrate that such life has ever visited earth.
The Universe Within: Discovering the Common History of Rocks, Planets, and People
Neil Shubin - 2013
Starting once again with fossils, he turns his gaze skyward, showing us how the entirety of the universe’s fourteen-billion-year history can be seen in our bodies. As he moves from our very molecular composition (a result of stellar events at the origin of our solar system) through the workings of our eyes, Shubin makes clear how the evolution of the cosmos has profoundly marked our own bodies. Fully illustrated with black and white drawings.
The Beginning of Infinity: Explanations That Transform the World
David Deutsch - 2011
Taking us on a journey through every fundamental field of science, as well as the history of civilization, art, moral values, and the theory of political institutions, Deutsch tracks how we form new explanations and drop bad ones, explaining the conditions under which progress—which he argues is potentially boundless—can and cannot happen. Hugely ambitious and highly original, The Beginning of Infinity explores and establishes deep connections between the laws of nature, the human condition, knowledge, and the possibility for progress.
A Devil's Chaplain: Reflections on Hope, Lies, Science, and Love
Richard Dawkins - 2003
He revisits the meme, the unit of cultural information that he named and wrote about in his groundbreaking work The Selfish Gene. He makes moving tributes to friends and colleagues, including a eulogy for novelist Douglas Adams; he shares correspondence with the evolutionary biologist Stephen Jay Gould; and he visits with the famed paleoanthropologists Richard and Maeve Leakey at their African wildlife preserve. He concludes the essays with a vivid note to his ten-year-old daughter, reminding her to remain curious, to ask questions, and to live the examined life.
Why Does E=mc²? (And Why Should We Care?)
Brian Cox - 2009
Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.
Until the End of Time: Mind, Matter, and Our Search for Meaning in an Evolving Universe
Brian Greene - 2020
Someday, we know, we will all die. And, we know, so too will the universe itself.Until the End of Time is Brian Greene's breathtaking new exploration of the cosmos and our quest to understand it. Greene takes us on a journey across time, from our most refined understanding of the universe's beginning, to the closest science can take us to the very end. He explores how life and mind emerged from the initial chaos, and how our minds, in coming to understand their own impermanence, seek in different ways to give meaning to experience: in story, myth, religion, creative expression, science, the quest for truth, and our longing for the timeless, or eternal. Through a series of nested stories that explain distinct but interwoven layers of reality-from the quantum mechanics to consciousness to black holes-Greene provides us with a clearer sense of how we came to be, a finer picture of where we are now, and a firmer understanding of where we are headed.Yet all this understanding, which arose with the emergence of life, will dissolve with its conclusion. Which leaves us with one realization: during our brief moment in the sun, we are tasked with the charge of finding our own meaning.Let us embark.