Book picks similar to
Deep Learning with Python by François Chollet


machine-learning
data-science
programming
python

Eloquent Ruby


Russ Olsen - 2011
    In Eloquent Ruby, Russ Olsen helps you write Ruby like true Rubyists do-so you can leverage its immense, surprising power. Olsen draws on years of experience internalizing the Ruby culture and teaching Ruby to other programmers. He guides you to the "Ah Ha!" moments when it suddenly becomes clear why Ruby works the way it does, and how you can take advantage of this language's elegance and expressiveness. Eloquent Ruby starts small, answering tactical questions focused on a single statement, method, test, or bug. You'll learn how to write code that actually looks like Ruby (not Java or C#); why Ruby has so many control structures; how to use strings, expressions, and symbols; and what dynamic typing is really good for. Next, the book addresses bigger questions related to building methods and classes. You'll discover why Ruby classes contain so many tiny methods, when to use operator overloading, and when to avoid it. Olsen explains how to write Ruby code that writes its own code-and why you'll want to. He concludes with powerful project-level features and techniques ranging from gems to Domain Specific Languages. A part of the renowned Addison-Wesley Professional Ruby Series, Eloquent Ruby will help you "put on your Ruby-colored glasses" and get results that make you a true believer.

Database Internals: A deep-dive into how distributed data systems work


Alex Petrov - 2019
    But with so many distributed databases and tools available today, it’s often difficult to understand what each one offers and how they differ. With this practical guide, Alex Petrov guides developers through the concepts behind modern database and storage engine internals.Throughout the book, you’ll explore relevant material gleaned from numerous books, papers, blog posts, and the source code of several open source databases. These resources are listed at the end of parts one and two. You’ll discover that the most significant distinctions among many modern databases reside in subsystems that determine how storage is organized and how data is distributed.This book examines:Storage engines: Explore storage classification and taxonomy, and dive into B-Tree-based and immutable log structured storage engines, with differences and use-cases for eachDistributed systems: Learn step-by-step how nodes and processes connect and build complex communication patterns, from UDP to reliable consensus protocolsDatabase clusters: Discover how to achieve consistent models for replicated data