Cosmic Numbers: The Numbers That Define Our Universe


James D. Stein - 2011
    We start counting our fingers and toes and end up balancing checkbooks and calculating risk. So powerful is the appeal of numbers that many people ascribe to them a mystical significance. Other numbers go beyond the supernatural, working to explain our universe and how it behaves. In Cosmic Numbers, mathematics professor James D. Stein traces the discovery, evolution, and interrelationships of the numbers that define our world. Everyone knows about the speed of light and absolute zero, but numbers like Boltzmann’s constant and the Chandrasekhar limit are not as well known, and they do far more than one might imagine: They tell us how this world began and what the future holds. Much more than a gee-whiz collection of facts and figures, Cosmic Numbers illuminates why particular numbers are so important—both to the scientist and to the rest of us.

The Feynman Lectures on Physics Vol 1


Richard P. Feynman - 1963
    This edition, which was prepared by Kip S. Thorne (Feynman Professor of Theoretical Physics at California Institute of Technology), fully incorporates all the errata and corrections gathered (but never used in a published edition) by Feynman.

An Introduction to Modern Cosmology


Andrew Liddle - 2003
    The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observational situation. This fully revised edition of a bestseller takes an approach which is grounded in physics with a logical flow of chapters leading the reader from basic ideas of the expansion described by the Friedman equations to some of the more advanced ideas about the early universe. It also incorporates up-to-date results from the Planck mission, which imaged the anisotropies of the Cosmic Microwave Background radiation over the whole sky. The Advanced Topic sections present subjects with more detailed mathematical approaches to give greater depth to discussions. Student problems with hints for solving them and numerical answers are embedded in the chapters to facilitate the reader's understanding and learning. Cosmology is now part of the core in many degree programs. This current, clear and concise introductory text is relevant to a wide range of astronomy programs worldwide and is essential reading for undergraduates and Masters students, as well as anyone starting research in cosmology.

First Contact: Scientific Breakthroughs in the Hunt for Life Beyond Earth


Marc Kaufman - 2011
    In First Contact, Marc Kaufman provides a gripping tour of the magnificent new science of astrobiology that is closing in on the discovery of extraterrestrial life. In recent decades, scientists generally held that the genesis of life was unique to Earth: It was too delicate a process, and the conditions needed to support it too fragile, for it to exist anywhere else. But we are now on the verge of the biggest discovery since Copernicus and Galileo told us that Earth is not at the center of the universe. New scientific breakthroughs have revolutionized our assumptions about the building blocks of life and where it may be found. Scientists have hunted down and identified exoplanets, those mysterious balls in the universe that orbit distant suns not too different from our own. They have discovered extremophiles, the extraordinary microbes that thrive in environments of intense heat or cold that may mimic the inhospitable conditions of other planets. They have landed rovers on Mars and detected its methane, a possible signature of past life. And they have created sophisticated equipment to sweep the sky for distant radio signals and to explore the deep icebound lakes of Antarctica. Each of these developments has brought forth a new generation of out-of-the-box researchers, adventurers, and thinkers who are each part Carl Sagan, part Indiana Jones, part Watson and Crick—and part forensic specialists on CSI: Mars. In this masterful book, Kaufman takes us to the frontiers of astrobiology’s quest for extraterrestrial life and shows how this quest is inextricably linked with the quest to understand life on Earth. He takes us deep under the glaciers of Antarctica, into the mouth of an Alaskan volcano, and beneath the Earth into the unbearable heat of a South African mine, and leads us to the world’s driest desert. For thousands of years, humans have wondered about who and what might be living beyond the confines of our planet. First Contact transports us into the cosmos to bring those musings back to Earth and recast our humanity.

A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science


Michael S. Schneider - 1994
    This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.

Packing for Mars: The Curious Science of Life in the Void


Mary Roach - 2010
    From the Space Shuttle training toilet to a crash test of NASA’s new space capsule, Mary Roach takes us on the surreally entertaining trip into the science of life in space and space on Earth.

A Briefer History of Time


Stephen Hawking - 1988
    Its author's engaging voice is one reason, and the compelling subjects he addresses is another; the nature of space and time, the role of God in creation, the history and future of the universe. But it is also true that in the years since its publication, readers have repeatedly told Professor Hawking of their great difficulty in understanding some of the book's most important concepts. This is the origin of and the reason for A Briefer History of Time: its author's wish to make its content more accessible to readers - as well as to bring it up-to-date with the latest scientific observations and findings.Although this book is literally somewhat "briefer", it actually expands on the great subjects of the original. Purely technical concepts, such as the mathematics of chaotic boundary conditions, are gone. Conversely, subjects of wide interest that were difficult to follow because they were interspersed throughout the book have now been given entire chapters of their own, including relativity, curved space, and quantum theory.This reorganization has allowed the authors to expand areas of special interest and recent progress, from the latest developments in string theory to exciting developments in the search for a complete unified theory of all the forces of physics. Like prior editions of the book - but even more so - A Briefer History of Time will guide nonscientists everywhere in the ongoing search for the tantalizing secrets at the heart of time and space. Thirty-seven full-color illustrations enhance the text and make A Briefer History of Time an exhilarating addition in its own right to the literature of science.

The Revolutionary Genius of Plants: A New Understanding of Plant Intelligence and Behavior


Stefano Mancuso - 2017
    Despite not having brains or central nervous systems, plants perceive their surroundings with an even greater sensitivity than animals. They efficiently explore and react promptly to potentially damaging external events thanks to their cooperative, shared systems; without any central command centers, they are able to remember prior catastrophic events and to actively adapt to new ones.Every page of Plant Revolution bubbles over with Stefano Mancuso’s infectious love for plants and for the eye-opening research that makes it more and more clear how remarkable our fellow inhabitants on this planet really are. In his hands, complicated science is wonderfully accessible, and he has loaded the book with gorgeous photographs that make for an unforgettable reading experience. Plant Revolution opens the doors to a new understanding of life on earth.

The Copernicus Complex: Our Cosmic Significance in a Universe of Planets and Probabilities


Caleb Scharf - 2014
    Wilson Literary Science Writing AwardShort-listed for Physics World 's Book of the Year The Sunday Times (UK) Best Science Book of 2014 A Publishers Weekly Top 10 Science Book of Fall 2014An NBC News Top Science and Tech Book of 2014A Politics & Prose 2014 Staff PickIn the sixteenth century, Nicolaus Copernicus dared to go against the establishment by proposing that Earth rotates around the Sun. Having demoted Earth from its unique position in the cosmos to one of mediocrity, Copernicus set in motion a revolution in scientific thought. This perspective has influenced our thinking for centuries. However, recent evidence challenges the Copernican Principle, hinting that we do in fact live in a special place, at a special time, as the product of a chain of unlikely events. But can we be significant if the Sun is still just one of a billion trillion stars in the observable universe? And what if our universe is just one of a multitude of others-a single slice of an infinity of parallel realities?In The Copernicus Complex, the renowned astrophysicist Caleb Scharf takes us on a scientific adventure, from tiny microbes within the Earth to distant exoplanets, probability theory, and beyond, arguing that there is a solution to this contradiction, a third way of viewing our place in the cosmos, if we weigh the evidence properly. As Scharf explains, we do occupy an unusual time in a 14-billion-year-old universe, in a somewhat unusual type of solar system surrounded by an ocean of unimaginable planetary diversity: hot Jupiters with orbits of less than a day, planet-size rocks spinning around dead stars, and a wealth of alien super-Earths. Yet life here is built from the most common chemistry in the universe, and we are a snapshot taken from billions of years of biological evolution. Bringing us to the cutting edge of scientific discovery, Scharf shows how the answers to fundamental questions of existence will come from embracing the peculiarity of our circumstance without denying the Copernican vision.With characteristic verve, Scharf uses the latest scientific findings to reconsider where we stand in the balance between cosmic significance and mediocrity, order and chaos. Presenting a compelling and bold view of our true status, The Copernicus Complex proposes a way forward in the ultimate quest: determining life's abundance, not just across this universe but across all realities.

Trespassing on Einstein's Lawn: A Father, a Daughter, the Meaning of Nothing, and the Beginning of Everything


Amanda Gefter - 2014
    At a Chinese restaurant outside of Philadelphia, a father asks his fifteen-year-old daughter a deceptively simple question: "How would you define nothing?" With that, the girl who once tried to fail geometry as a conscientious objector starts reading up on general relativity and quantum mechanics, as she and her dad embark on a life-altering quest for the answers to the universe's greatest mysteries.Before Amanda Gefter became an accomplished science writer, she was a twenty-one-year-old magazine assistant willing to sneak her and her father, Warren, into a conference devoted to their physics hero, John Wheeler. Posing as journalists, Amanda and Warren met Wheeler, who offered them cryptic clues to the nature of reality: The universe is a self-excited circuit, he said. And, The boundary of a boundary is zero. Baffled, Amanda and Warren vowed to decode the phrases--and with them, the enigmas of existence. When we solve all that, they agreed, we'll write a book.Trespassing on Einstein's Lawn is that book, a memoir of the impassioned hunt that takes Amanda and her father from New York to London to Los Alamos. Along the way, they bump up against quirky science and even quirkier personalities, including Leonard Susskind, the former Bronx plumber who invented string theory; Ed Witten, the soft-spoken genius who coined the enigmatic M-theory; even Stephen Hawking.What they discover is extraordinary: the beginnings of a monumental paradigm shift in cosmology, from a single universe we all share to a splintered reality in which each observer has her own. Reality, the Gefters learn, is radically observer-dependent, far beyond anything of which Einstein or the founders of quantum mechanics ever dreamed--with shattering consequences for our understanding of the universe's origin. And somehow it all ties back to that conversation, to that Chinese restaurant, and to the true meaning of nothing.Throughout their journey, Amanda struggles to make sense of her own life--as her journalism career transforms from illusion to reality, as she searches for her voice as a writer, as she steps from a universe shared with her father to at last carve out one of her own. It's a paradigm shift you might call growing up.By turns hilarious, moving, irreverent, and profound, Trespassing on Einstein's Lawn weaves together story and science in remarkable ways. By the end, you will never look at the universe the same way again.Praise for Trespassing on Einstein's Lawn"Nothing quite prepared me for this book. Wow. Reading it, I alternated between depression--how could the rest of us science writers ever match this?--and exhilaration."--Scientific American "To Do: Read Trespassing on Einstein's Lawn. Reality doesn't have to bite."--New York "A zany superposition of genres . . . It's at once a coming-of-age chronicle and a father-daughter road trip to the far reaches of this universe and 10,500 others."--The Philadelphia Inquirer

The Planet Factory: Exoplanets and the Search for a Second Earth


Elizabeth Tasker - 2017
    Now it's one of the fastest-growing fields in astronomy with thousands of exoplanets discovered to date, and the number is rising fast.These new-found worlds are more alien than anything in fiction. Planets larger than Jupiter with years lasting a week; others with two suns lighting their skies, or with no sun at all. Planets with diamond mantles supporting oceans of tar; possible Earth-sized worlds with split hemispheres of perpetual day and night; waterworlds drowning under global oceans and volcanic lava planets awash with seas of magma. The discovery of this diversity is just the beginning. There is a whole galaxy of possibilities. The Planet Factory tells the story of these exoplanets. Each planetary system is different, but in the beginning most if not all young stars are circled by clouds of dust, specks that come together in a violent building project that can form colossal worlds hundreds of times the size of the Earth. The changing orbits of young planets risk dooming any life evolving on neighbouring worlds or, alternatively, can deliver the key ingredients needed to seed its beginnings. Planet formation is one of the greatest construction schemes in the Universe, and it occurred around nearly every star you see. Each results in an alien landscape, but is it possible that one of these could be like our own home world?

The Human Cosmos: A Secret History of the Stars


Jo Marchant - 2020
    Jo Marchant's book can begin to heal it. For at least 20,000 years, we have led not just an earthly existence but a cosmic one. Celestial cycles drove every aspect of our daily lives. Our innate relationship with the stars shaped who we are--our art, religious beliefs, social status, scientific advances, and even our biology. But over the last few centuries we have separated ourselves from the universe that surrounds us. It's a disconnect with a dire cost.Our relationship to the stars and planets has moved from one of awe, wonder and superstition to one where technology is king--the cosmos is now explored through data on our screens, not by the naked eye observing the natural world. Indeed, in most countries modern light pollution obscures much of the night sky from view. Jo Marchant's spellbinding parade of the ways different cultures celebrated the majesty and mysteries of the night sky is a journey to the most awe inspiring view you can ever see--looking up on a clear dark night. That experience and the thoughts it has engendered have radically shaped human civilization across millennia. The cosmos is the source of our greatest creativity in art, in science, in life.To show us how, Jo Marchant takes us to the Hall of the Bulls in the caves at Lascaux in France, and to the summer solstice at a 5,000-year-old tomb at New Grange in England. We discover Chumash cosmology and visit medieval monks grappling with the nature of time and Tahitian sailors navigating by the stars. We discover how light reveals the chemical composition of the sun, and we are with Einstein as he works out that space and time are one and the same. A four-billion-year-old meteor inspires a search for extraterrestrial life. The cosmically liberating, summary revelation is that star-gazing made us human.

The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics


Leonard Susskind - 2008
    Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics.The Black Hole War is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality -- effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space.A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.

Nothing: From Absolute Zero to Cosmic Oblivion - Amazing Insights into Nothingness


Jeremy Webb - 2013
    It's all too easy to ignore the fascinating possibilities of emptiness and non-existence, and we may well wonder what there is to say about nothing. But scientists have known for centuries that nothing is the key to understanding absolutely everything, from why particles have mass to the expansion of the universe - so without nothing we'd be precisely nowhere.Absolute zero (the coldest cold that can exist) and the astonishing power of placebos, light bulbs, superconductors, vacuums, dark energy, 'bed rest' and the birth of time - all are different aspects of the concept of nothing. The closer we look, the bigger the subject gets. Why do some animals spend all day doing nothing? What happens in our brains when we try to think about nothing? With chapters by 20 science writers, including top names such as Ian Stewart, Marcus Chown, Nigel Henbest, Michael Brooks, Paul Davies and David Fisher, this fascinating and intriguing book revels in a subject that has tantalised the finest minds for centuries, and shows there's more to nothing than meets the eye.

At Home in the Universe: The Search for the Laws of Self-Organization and Complexity


Stuart A. Kauffman - 1995
    At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of greatcivilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertilemix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is agreat undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls order for free, that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a newentity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much likethe phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not ahighly improbable chance event, but almost inevitable). Kauffman uses the basic insight of order for free to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science ofcomplexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules tofind new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element toKauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it a landmark and a classic. And Nobel Laureate Philip Anderson wrote that there are few people in this world who ever ask the right questions of science, and they are theones who affect its future most profoundly. Stuart Kauffman is one of these. In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.