Book picks similar to
Scientific Computing with Case Studies by Dianne P. O'Leary
numerical-analysis
selling
computers
computing
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Beginning Arduino
Michael McRoberts - 2010
You'll progress from a complete beginner regarding Arduino programming and electronics knowledge to intermediate skills and the confidence to create your own amazing Arduino projects. Absolutely no experience in programming or electronics required!Rather than requiring you to wade through pages of theory before you start making things, this book has a hands-on approach. You will dive into making projects right from the start, learning how to use various electronic components and how to program the Arduino to control or communicate with those components.Each project is designed to build upon the knowledge learned in earlier projects and to further your knowledge in programming as well as skills with electronics. By the end of the book you will be able create your own projects confidently and with creativity.Please note: the print version of this title is black & white; the eBook is full color. You can download the color diagrams in the book from http: //www.apress.com/9781430232407
Cybernetics: or the Control and Communication in the Animal and the Machine
Norbert Wiener - 1948
It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
Game Theory 101: The Basics
William Spaniel - 2011
From the first lesson to the last, each chapter introduces games of increasing complexity and then teaches the game theoretical tools necessary to solve them. Inside, you will find:
All the basics fully explained, including pure strategy Nash equilibrium, mixed strategy Nash equilibrium, the mixed strategy algorithm, how to calculate payoffs, strict dominance, weak dominance, iterated elimination of strictly dominated strategies, iterated elimination of weakly dominated strategies, and more!
Dozens of games solved, including the prisoner's dilemma, stag hunt, matching pennies, zero sum games, battle of the sexes/Bach or Stravinsky, chicken/snowdrift, pure coordination, deadlock, and safety in numbers!
Crystal clear, line-by-line calculations of every step, with more than 200 images so you don't miss a thing!
Tons of applications: war, trade, game shows, and duopolistic competition.
Quick, efficient, and to the point, Game Theory 101: The Basics is perfect for introductory game theory, intermediate microeconomics, and political science.
Tell Me The Odds: A 15 Page Introduction To Bayes Theorem
Scott Hartshorn - 2017
Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Mathematics With Applications in Management and Economics/Solutions Manual
Earl K. Bowen - 1987
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Microsoft Excel Essential Hints and Tips: Fundamental hints and tips to kick start your Excel skills
Diane Griffiths - 2015
We look at how to set up your spreadsheet, getting data into Excel, formatting your spreadsheet, a bit of display management and how to print and share your spreadsheets. Learn Excel Visually The idea of these short handy bite-size books is to provide you with what I have found to be most useful elements of Excel within my day-to-day work and life. I don’t tell you about all the bells and whistles – just what you need on a daily basis. These eBooks are suitable for anyone who is looking to learn Excel and wants to increase their productivity and efficiency, both at work and home. Please bear in mind I don’t cover all functionality of all areas, the point is that I strip out anything that’s not useful and only highlight the functionality that I believe is useful on a daily basis. Don’t buy a huge textbook which you’ll never fully read, pick an eBook which is most relevant to your current learning, read it, apply it and then get on with your day.
Professional Test Driven Development with C#: Developing Real World Applications with Tdd
James Bender - 2011
This hands-on guide provides invaluable insight for creating successful test-driven development processes. With source code and examples featured in both C# and .NET, the book walks you through the TDD methodology and shows how it is applied to a real-world application. You'll witness the application built from scratch and details each step that is involved in the development, as well as any problems that were encountered and the solutions that were applied.Clarifies the motivation behind test-driven development (TDD), what it is, and how it works Reviews the various steps involved in developing an application and the testing that is involved prior to implementing the functionality Discusses unit testing and refactoring Professional Test-Driven Development with C# shows you how to create great TDD processes right away.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.