Book picks similar to
Finding Groups In Data: An Introduction To Cluster Analysis by Leonard Kaufman
language
read-science
stats
book-list-14
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
English Fluency For Advanced English Speaker: How To Unlock The Full Potential To Speak English Fluently
Whitney Nelson - 2015
Regardless of what actions are taken, progression is slow or limited.Here is a checklist to see if this guide is for you. You Are an Advanced English Speaker If.. ✔ You can understand 70% of an English speaking movie.✔ You can answer simple questions in a conversation, but you have a hard time elaborate your points when trying to explain in more details.✔ You can have a short conversation, but you stutter sometimes when you speak.✔ You can write better than you speak.✔ You stutter when you try to speak fast.✔ You can speak quite well, but you have a strong accent.If one of those sounds familiar to you, perhaps you have found the right book. This book is essential for you to break through and not only improving your spoken skills but developing them so well that you can speak like a native English speaker.Armed with the proven tips, tricks, and techniques in this book, you’ll discover that you’ll be soaring to an entirely new and exciting level of learning within days. On top of that, these guidelines can be used nearly effortlessly. Proven Technique That Works You’ll discover what “shadowing” is and how it can painlessly take you to a supreme status in your studies. You’ll also learn about a related method of learning to pronounce English fearlessly. It’s called the “scriptorium method.” Once you try it you’ll realize why so many people praise its effectiveness.English is not an easy language to learn. But if you are using proper methods to learn and speak, you’ll find that your next level of learning is just a click away. Learn and adopt these techniques, tips, and many more secrets revealed in this book, and your English fluency will be on a whole different level in 60 days !Remember: Practice doesn't make perfect. Perfect practice makes perfect.Download Now and Start Speaking Fluent English!
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
How to Make Sense of Any Mess: Information Architecture for Everybody
Abby Covert - 2014
It is easy to be overwhelmed by the amount of information we encounter each day. Whether at work, at school, or in our personal endeavors, there’s a deepening (and inescapable) need for people to work with and understand information. Information architecture is the way that we arrange the parts of something to make it understandable as a whole. When we make things for others to use, the architecture of information that we choose greatly affects our ability to deliver our intended message to our users. We all face messes made of information and people. I define the word “mess” the same way that most dictionaries do: “A situation where the interactions between people and information are confusing or full of difficulties.” — Who doesn’t bump up against messes made of information and people every day? This book provides a seven step process for making sense of any mess. Each chapter contains a set of lessons as well as workbook exercises architected to help you to work through your own mess.
Probability Theory: The Logic of Science
E.T. Jaynes - 1999
It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.
Making Things Talk: Practical Methods for Connecting Physical Objects
Tom Igoe - 2007
But when devices that you've built start to talk to each other, things really start to get interesting. Through a series of simple projects, you'll learn how to get your creations to communicate with one another by forming networks of smart devices that carry on conversations with you and your environment. Whether you need to plug some sensors in your home to the Internet or create a device that can interact wirelessly with other creations, Making Things Talk explains exactly what you need. This book is perfect for people with little technical training but a lot of interest. Maybe you're a science teacher who wants to show students how to monitor weather conditions at several locations at once, or a sculptor who wants to stage a room of choreographed mechanical sculptures. Making Things Talk demonstrates that once you figure out how objects communicate -- whether they're microcontroller-powered devices, email programs, or networked databases -- you can get them to interact. Each chapter in contains instructions on how to build working projects that help you do just that. You will:Make your pet's bed send you email Make your own seesaw game controller that communicates over the Internet Learn how to use ZigBee and Bluetooth radios to transmit sensor data wirelessly Set up communication between microcontrollers, personal computers, and web servers using three easy-to-program, open source environments: Arduino/Wiring, Processing, and PHP. Write programs to send data across the Internet based on physical activity in your home, office, or backyard And much more With a little electronics know-how, basic (not necessarily in BASIC) programming skills, a couple of inexpensive microcontroller kits and some network modules to make them communicate using Ethernet, ZigBee, and Bluetooth, you can get started on these projects right away. With Making Things Talk, the possibilities are practically endless.
On LISP: Advanced Techniques for Common LISP
Paul Graham - 1993
On Lisp explains the reasons behind Lisp's growing popularity as a mainstream programming language. On Lisp is a comprehensive study of advanced Lisp techniques, with bottom-up programming as the unifying theme. It gives the first complete description of macros and macro applications. The book also covers important subjects related to bottom-up programming, including functional programming, rapid prototyping, interactive development, and embedded languages. The final chapter takes a deeper look at object-oriented programming than previous Lisp books, showing the step-by-step construction of a working model of the Common Lisp Object System (CLOS). As well as an indispensable reference, On Lisp is a source of software. Its examples form a library of functions and macros that readers will be able to use in their own Lisp programs.
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
The Hundred-Page Machine Learning Book
Andriy Burkov - 2019
During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Bayesian Data Analysis
Andrew Gelman - 1995
Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Onboard French: Learn a language before you land
Eton Institute - 2013
Learn the Alphabet and pronunciation as well as useful phrases in 8 categories, such as greetings, travel and directions, making friends to business and emergencies. Download, read and enjoy your vacation like never before.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Foundations of Statistical Natural Language Processing
Christopher D. Manning - 1999
This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
Bradley Efron - 2016
'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.