Book picks similar to
Statistics for Spatio-Temporal Data by Noel A.C. Cressie
science
space-geog-maps-arch
stat-spatial
statistics
The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives
Stephen Thomas Ziliak - 2008
If it takes a book to get it across, I hope this book will do it. It ought to.”—Thomas Schelling, Distinguished University Professor, School of Public Policy, University of Maryland, and 2005 Nobel Prize Laureate in Economics “With humor, insight, piercing logic and a nod to history, Ziliak and McCloskey show how economists—and other scientists—suffer from a mass delusion about statistical analysis. The quest for statistical significance that pervades science today is a deeply flawed substitute for thoughtful analysis. . . . Yet few participants in the scientific bureaucracy have been willing to admit what Ziliak and McCloskey make clear: the emperor has no clothes.”—Kenneth Rothman, Professor of Epidemiology, Boston University School of Health The Cult of Statistical Significance shows, field by field, how “statistical significance,” a technique that dominates many sciences, has been a huge mistake. The authors find that researchers in a broad spectrum of fields, from agronomy to zoology, employ “testing” that doesn’t test and “estimating” that doesn’t estimate. The facts will startle the outside reader: how could a group of brilliant scientists wander so far from scientific magnitudes? This study will encourage scientists who want to know how to get the statistical sciences back on track and fulfill their quantitative promise. The book shows for the first time how wide the disaster is, and how bad for science, and it traces the problem to its historical, sociological, and philosophical roots. Stephen T. Ziliak is the author or editor of many articles and two books. He currently lives in Chicago, where he is Professor of Economics at Roosevelt University. Deirdre N. McCloskey, Distinguished Professor of Economics, History, English, and Communication at the University of Illinois at Chicago, is the author of twenty books and three hundred scholarly articles. She has held Guggenheim and National Humanities Fellowships. She is best known for How to Be Human* Though an Economist (University of Michigan Press, 2000) and her most recent book, The Bourgeois Virtues: Ethics for an Age of Commerce (2006).
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
Michael G. Milton - 2009
If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Master of Electricity - Nikola Tesla: A Quick-Read Biography About the Life and Inventions of a Visionary Genius
Cynthia A. Parker - 2015
Parker removes that pain by offering an opportunity to Get-to-Know the 'Master of Electricity,' to learn of his youth and upbringing, his early career, and of course his pivotal role in advancing the World into the Electrical Age! Turn these pages and enjoy the opportunity to learn history, but better yet to come to know Tesla better through Parker’s amazing ability to describe his life, his eccentricities and above all, his accomplishments; making this an enjoyable and interesting Quick-Read Biography. This Book also Comes with a FREE Gift!
Stories from the Emergency Department
Mary Beth Engrav - 2011
Real stories about the patients, nurses, consulting physicians, and daily life of a busy Emergency Department. Get a glimpse inside the inner workings of an Emergency Department and the staff that works there, caring for patients and their families. From a toddler who can cuss a blue streak, a dead mouse brought into the Emergency Department, to critical resuscitations, these are stories that you will never forget.
Rickshaw
David McGrath - 2015
In a last-ditch effort to sort something out, he rents a rickshaw, propelling him into a frantic sub-culture of criminals, misfits and lost souls. Rickshaw is a dangerous bedlam of close calls and near misses and its passengers are the drunken, beaten down and stranded. To work rickshaw, Irish must take a lesson in stamina and shift up through his emotional gears but no matter how hard he pedals, always hot on his heels, is his past. Hilarious, poignant and razor sharp, this debut novel captures the underbelly of London’s West End through a stunningly, gimlet eye and electrifying energy.
Missing Mona: A Tommy Cuda Mystery
Joe Klingler - 2015
As he looks squarely at his next decade of life his smartphone convinces him the time is ripe for a change. A gift from his grandfather provides the means, so he embarks on the path of blues artists and beatniks before him-and hits the road. He immediately meets a damsel in hitchhiking distress who says her name is Mona. Her presence persuades him that the bright lights and dark clubs of Chicago might be his kind of town. So on a summer Saturday night they settle into a fancy hotel overlooking the beaches of Lake Michigan. On Sunday...Mona disappears.But she leaves behind more than a sweet memory that involves Tommy in a brand new cash flow problem he never imagined. While trying to sort out how to stay on the right side of the law and get back on the road, he meets a young criminologist who helps him, a DJ who doesn't, and a librarian who teaches him about the city, women, and the art of the makeover. After truth and lies are stirred like a blue martini, being assaulted by a pink monkey, and witnessing a drive-by shooting that drowns a Ferrari-Tommy is desperate to help Mona.If he can find her.Praise for Joe Klingler:"...dramatic, vivid, evocative, and perfectly detailed."--San Francisco Book Review"Fierce writing chops...balance action and subterfuge...effortlessly clever prose."--Kirkus Reviews"Klingler is skilled at writing action scenes. He puts the reader directly in the line of fire, and doesn't let up."--Foreword Clarion Reviews
Mischief Under the Mistletoe (A Holiday Romance Boxed Set)
Stephanie Rowe - 2021
What was I Thinking
Paul Henry - 2011
It will keep you entertained for hours. It's the very unusual story of Paul Henry - from his eventful childhood to his adventurous career in journalism to his recent outrageous comments on television which divided the country.A natural-born story teller, Paul spins many great yarns in this book. It's fascinating insight into his complex character. He's surprising -- he doesn't adhere to any prescribed set of beliefs. He's bold -- he set himself up as an international news correspondent working out of his Masterton lounge. And he's versatile -- turning his hand to running a cafe, running for Parliament and running from terrorists.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Chances Are . . .: Adventures in Probability
Michael Kaplan - 2003
All things are possible, only one thing actually happens; everything else is in the realm of probability. The twin disciplines of probability and statistics underpin every modern science and sketch the shape of all purposeful group activity- politics, economics, medicine, law, sports-giving humans a handle on the essential uncertainty of their existence. Yet while we are all aware of the hard facts, most of us still refuse to take account of probability-preferring to drive, not fly; buying into market blips; smoking cigarettes; denying we will ever age. There are some people, though-gamblers, risk buyers, forensic experts, doctors, strategists- who find probability's mass of incomplete uncertainties delightful and revelatory. "Chances Are" is their story. Combining philosophical and historical background with portraits of the men and women who command the forces of probability, this engaging, wide-ranging, and clearly written volume will be welcomed not only by the proven audiences for popular books like "E=MC2" and "The Golden Ratio" but by anyone interested in the workings of fate.
Numsense! Data Science for the Layman: No Math Added
Annalyn Ng - 2017
Sold in over 85 countries and translated into more than 5 languages.---------------Want to get started on data science?Our promise: no math added.This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations and visuals.Popular concepts covered include:- A/B Testing- Anomaly Detection- Association Rules- Clustering- Decision Trees and Random Forests- Regression Analysis- Social Network Analysis- Neural NetworksFeatures:- Intuitive explanations and visuals- Real-world applications to illustrate each algorithm- Point summaries at the end of each chapter- Reference sheets comparing the pros and cons of algorithms- Glossary list of commonly-used termsWith this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.
Intuitive Biostatistics
Harvey Motulsky - 1995
Intuitive Biostatistics covers all the topics typically found in an introductory statistics text, but with the emphasis on confidence intervals rather than P values, making it easier for students to understand both. Additionally, it introduces a broad range of topics left out of most other introductory texts but used frequently in biomedical publications, including survival curves. multiple comparisons, sensitivity and specificity of lab tests, Bayesian thinking, lod scores, and logistic, proportional hazards and nonlinear regression. By emphasizing interpretation rather than calculation, this text provides a clear and virtually painless introduction to statistical principles for those students who will need to use statistics constantly in their work. In addition, its practical approach enables readers to understand the statistical results published in biological and medical journals.
C for Dummies
Dan Gookin - 1997
Actually, it's computer sense--C programming. After digesting C For Dummies, 2nd Edition, you'll understand it. C programs are fast, concise and versatile. They let you boss your computer around for a change. So turn on your computer, get a free compiler and editor (the book tells you where), pull up a chair, and get going. You won't have to go far (page 13) to find your first program example. You'll do short, totally manageable, hands-on exercises to help you make sense of:All 32 keywords in the C language (that's right--just 32 words) The functions--several dozen of them Terms like printf(), scanf(), gets (), and puts () String variables, numeric variables, and constants Looping and implementation Floating-point values In case those terms are almost as intimidating as the idea of programming, be reassured that C For Dummies was written by Dan Gookin, bestselling author of DOS For Dummies, the book that started the whole library. So instead of using expletives and getting headaches, you'll be using newly acquired skills and getting occasional chuckles as you discover how to:Design and develop programs Add comments (like post-it-notes to yourself) as you go Link code to create executable programs Debug and deploy your programs Use lint, a common tool to examine and optimize your code A helpful, tear-out cheat sheet is a quick reference for comparison symbols, conversion characters, mathematical doodads, C numeric data types, and more. C For Dummies takes the mystery out of programming and gets you into it quickly and painlessly.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases