Book picks similar to
AGI Revolution by Ben Goertzel
science
ai
technology
ai-ml
Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World
Leslie Valiant - 2013
We nevertheless muddle through even in the absence of theories of how to act. But how do we do it?In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is “probably approximately correct” algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant’s theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence.Offering a powerful and elegant model that encompasses life’s complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.
The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future
Martin Ford - 2009
THE LIGHTS IN THE TUNNEL employs a powerful thought experiment to explore the economy of the future. An imaginary "tunnel of lights" is used to visualize the economic implications of the new technologies that are likely to appear in the coming years and decades. The book directly challenges conventional views of the future and illuminates the danger that lies ahead if we do not plan for the impact of rapidly advancing technology. It also shows how the economic realities of the future might offer solutions to issues such as poverty and climate change.
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
The New Breed: What Our History with Animals Reveals about Our Future with Robots
Kate Darling - 2021
But MIT Media Lab researcher and technology policy expert Kate Darling argues just the opposite, and that treating robots with a bit of humanity, more like the way we treat animals, will actually serve us better. From a social, legal, and ethical perspective, she shows that our current ways of thinking don't leave room for the robot technology that is soon to become part of our everyday routines. Robots are likely to supplement--rather than replace--our own skills and relationships. So if we consider our history of incorporating animals into our work, transportation, military, and even families, we actually have a solid basis for how to contend with this future.A deeply original analysis of our technological future and the ethical dilemmas that await us, The New Breed explains how the treatment of machines can reveal a new understanding of our own history, our own systems and how we relate--not just to non-humans, but also to each other.
More Than Human: Embracing the Promise of Biological Enhancement
Ramez Naam - 2005
Book by Naam, Ramez
Heart of the Machine: Our Future in a World of Artificial Emotional Intelligence
Richard Yonck - 2017
Heart of the Machine explores the next giant step in the relationship between humans and technology: the ability of computers to recognize, respond to, and even replicate emotions. Computers have long been integral to our lives, and their advances continue at an exponential rate. Many believe that artificial intelligence equal or superior to human intelligence will happen in the not-too-distance future; some even think machine consciousness will follow. Futurist Richard Yonck argues that emotion, the first, most basic, and most natural form of communication, is at the heart of how we will soon work with and use computers.Instilling emotions into computers is the next leap in our centuries-old obsession with creating machines that replicate humans. But for every benefit this progress may bring to our lives, there is a possible pitfall. Emotion recognition could lead to advanced surveillance, and the same technology that can manipulate our feelings could become a method of mass control. And, as shown in movies like Her and Ex Machina, our society already holds a deep-seated anxiety about what might happen if machines could actually feel and break free from our control. Heart of the Machine is an exploration of the new and inevitable ways in which mankind and technology will interact.
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
The Alignment Problem: Machine Learning and Human Values
Brian Christian - 2020
Today’s "machine-learning" systems, trained by data, are so effective that we’ve invited them to see and hear for us?and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem.Systems cull résumés until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole?and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands.The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called “artificial intelligence.” They are steadily replacing both human judgment and explicitly programmed software.In best-selling author Brian Christian’s riveting account, we meet the alignment problem’s “first-responders,” and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they—and we—succeed or fail in solving the alignment problem will be a defining human story.The Alignment Problem offers an unflinching reckoning with humanity’s biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture—and finds a story by turns harrowing and hopeful.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.
The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies
Erik Brynjolfsson - 2014
Digital technologies—with hardware, software, and networks at their core—will in the near future diagnose diseases more accurately than doctors can, apply enormous data sets to transform retailing, and accomplish many tasks once considered uniquely human.In The Second Machine Age MIT’s Erik Brynjolfsson and Andrew McAfee—two thinkers at the forefront of their field—reveal the forces driving the reinvention of our lives and our economy. As the full impact of digital technologies is felt, we will realize immense bounty in the form of dazzling personal technology, advanced infrastructure, and near-boundless access to the cultural items that enrich our lives.Amid this bounty will also be wrenching change. Professions of all kinds—from lawyers to truck drivers—will be forever upended. Companies will be forced to transform or die. Recent economic indicators reflect this shift: fewer people are working, and wages are falling even as productivity and profits soar.Drawing on years of research and up-to-the-minute trends, Brynjolfsson and McAfee identify the best strategies for survival and offer a new path to prosperity. These include revamping education so that it prepares people for the next economy instead of the last one, designing new collaborations that pair brute processing power with human ingenuity, and embracing policies that make sense in a radically transformed landscape.A fundamentally optimistic book, The Second Machine Age alters how we think about issues of technological, societal, and economic progress.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates