Problems in Mathematics with Hints and Solutions


V. Govorov - 1996
    Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C

University Physics with Modern Physics


Hugh D. Young - 1949
    Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.

Pathfinder For Nda & Na Entrance Examination National Defence Academy/Naval Academy Conducted By Upsc


Arihant Experts - 2014
    Competition Book

Mathematics: From the Birth of Numbers


Jan Gullberg - 1997
    The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology.Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous asides, ranging from limericks and tall stories to cartoons and decorative drawings.

Vector Mechanics for Engineers: Statics


Ferdinand P. Beer - 1977
    Following on the success of the first six editions of the series, this work introduces theoretical and pedagogical innovations in statics, dynamics, and mechanics of materials education.

Men of Mathematics


Eric Temple Bell - 1937
    Bell, a leading figure in mathematics in America for half a century. Men of Mathematics accessibly explains the major mathematics, from the geometry of the Greeks through Newton's calculus and on to the laws of probability, symbolic logic, and the fourth dimension. In addition, the book goes beyond pure mathematics to present a series of engrossing biographies of the great mathematicians -- an extraordinary number of whom lived bizarre or unusual lives. Finally, Men of Mathematics is also a history of ideas, tracing the majestic development of mathematical thought from ancient times to the twentieth century. This enduring work's clear, often humorous way of dealing with complex ideas makes it an ideal book for the non-mathematician.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

Quantum Field Theory in a Nutshell


A. Zee - 2003
    A quantum field theory text for the twenty-first century, this book makes the essential tool of modern theoretical physics available to any student who has completed a course on quantum mechanics and is eager to go on.Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics. These days, physicists turn to quantum field theory to describe a multitude of phenomena.Stressing critical ideas and insights, Zee uses numerous examples to lead students to a true conceptual understanding of quantum field theory--what it means and what it can do. He covers an unusually diverse range of topics, including various contemporary developments, while guiding readers through thoughtfully designed problems. In contrast to previous texts, Zee incorporates gravity from the outset and discusses the innovative use of quantum field theory in modern condensed matter theory.Without a solid understanding of quantum field theory, no student can claim to have mastered contemporary theoretical physics. Offering a remarkably accessible conceptual introduction, this text will be widely welcomed and used.

50 Mathematical Ideas You Really Need to Know


Tony Crilly - 2007
    Who invented zero? Why are there 60 seconds in a minute? Can a butterfly's wings really cause a storm on the far side of the world? In 50 concise essays, Professor Tony Crilly explains the mathematical concepts that allow use to understand and shape the world around us.

Transport Processes and Separation Process Principles (Includes Unit Operations)


Christie J. Geankoplis - 2003
    Enhancements to this edition include a more thorough coverage of transport processes, plus new or expanded coverage of separation process applications, fluidized beds, non-Newtonian fluids, membrane separation processes and gas-membrane theory, and much more. The book contains 240+ example problems and 550+ homework problems.

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.

Tell Me The Odds: A 15 Page Introduction To Bayes Theorem


Scott Hartshorn - 2017
    Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

Pure Mathematics: A First Course


J.K. Backhouse - 1974
    This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.

Building Thinking Classrooms in Mathematics, Grades K-12: 14 Teaching Practices for Enhancing Learning


Peter Liljedahl - 2020
     Building Thinking Classrooms in Mathematics, Grades K-12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guideProvides the what, why, and how of each practice Includes firsthand accounts of how these practices foster thinking Offers a plethora of macro moves, micro moves, and rich tasks to get started