G. W. Leibniz's Monadology: An Edition for Students


Gottfried Wilhelm Leibniz - 1714
    Leibniz' Monadology, one of the most important pieces of the Leibniz corpus, is at once one of the great classics of modern philosophy & one of its most puzzling productions. Because the essay is written in so compactly condensed a fashion, for almost three centuries it has baffled & beguiled those who read it for the first time. Nicholas Rescher accompanies the text of the Monadology section-by-section with relevant excerpts from some of Leibniz' widely scattered discussions of the matters at issue. The result serves a dual purpose of providing a commentary of the Monadology by Leibniz himself, while at the same time supplying an exposition of his philosophy using the Monadology as an outline. The book contains all the materials that even the most careful study of this text could require: a detailed overview of the philosophical background of the work & of its bibliographic ramifications; a presentation of the original French text together with a new, closely faithful English translation; a selection of other relevant Leibniz texts; & a detailed commentary. Rescher also provides a survey of Leibniz' use of analogies & three separate indices of key terms & expressions, Leibniz' French terminology, & citations. Rescher's edition of the Monadology presents Leibniz' ideas faithfully, accurately & accessibly, making it especially valuable to scholars & students alike.

The Tao of Physics: An Exploration of the Parallels between Modern Physics and Eastern Mysticism


Fritjof Capra - 1975
    

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World


Mark Miodownik - 2013
    Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik a globally-renowned materials scientist has spent his life exploring In this book he examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the foam in his sneakers and the concrete in a nearby skyscraper.

The Sun, the Genome and the Internet: Tools of Scientific Revolutions


Freeman Dyson - 1999
    He shows rather that new tools are more often the sparks that ignite scientific discovery. Such tool-driven revolutions have profound social consequences--the invention of the telescope turning the Medieval world view upside down, the widespread use of household appliances in the 1950s replacing servants, to cite just two examples. In looking ahead, Dyson suggests that solar energy, genetics, and the Internet will have similarly transformative effects, with the potential to produce a more just and equitable society. Solar power could bring electricity to even the poorest, most remote areas of third world nations, allowing everyone access to the vast stores of information on the Internet and effectively ending the cultural isolation of the poorest countries. Similarly, breakthroughs in genetics may well enable us to give our children healthier lives and grow more efficient crops, thus restoring the economic and human vitality of village cultures devalued and dislocated by the global market.Written with passionate conviction about the ethical uses of science, The Sun, the Genome, and the Internet is both a brilliant reinterpretation of the scientific process and a challenge to use new technologies to close, rather than widen, the gap between rich and poor.

What's Next?: Dispatches on the Future of Science


Max Brockman - 2009
    Its contributors—some of the most brilliant young scientists working today—provide not only an introduction to their cutting-edge research, but discuss the social, ethical, and philosophical ramifications of their work. With essays covering fields as diverse as astrophysics, paleoanthropology, climatology, and neuroscience, What's Next? is a lucid and informed guide to the new frontiers of science.

Physics and Philosophy


James Hopwood Jeans - 1942
    This discussion paves the way for an outline of epistemological methods in which the rationalism of thinkers like Descartes, Leibniz and Kant is compared to the empiricism of Locke and Hume.Over the course of the book, in a manner that is careful and methodic but never dull, Jeans marshals the evidence for his startling conclusion: recent discoveries in astronomy, mathematics, sub-atomic physics and other disciplines have washed away the scientific basis of many older philosophic discussions. Such long-standing problems as causality, free will and determinism, the nature of space and time, materialism and mentalism must be considered anew int he light of new knowledge and information attained by 20th-century physical science. Even then, however, Jeans cautions against drawing any positive conclusions, pointing out that both physics and philosophy are both relatively young and that we are still, in Newton's words, like children playing with pebbles on the sea-shore, while the great ocean of truth rolls, unexplored, beyond our reach.Although first published nearly 40 years ago, nothing in physics has happened to affect Jean's account in this book; it remains remarkably fresh and undated, a classic exposition of the philosophical implications of scientific knowledge.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

How We Got to Now: Six Innovations That Made the Modern World


Steven Johnson - 2014
    Filled with surprising stories of accidental genius and brilliant mistakes—from the French publisher who invented the phonograph before Edison but forgot to include playback, to the Hollywood movie star who helped invent the technology behind Wi-Fi and Bluetooth—How We Got to Now investigates the secret history behind the everyday objects of contemporary life. In his trademark style, Johnson examines unexpected connections between seemingly unrelated fields: how the invention of air-conditioning enabled the largest migration of human beings in the history of the species—to cities such as Dubai or Phoenix, which would otherwise be virtually uninhabitable; how pendulum clocks helped trigger the industrial revolution; and how clean water made it possible to manufacture computer chips. Accompanied by a major six-part television series on PBS, How We Got to Now is the story of collaborative networks building the modern world, written in the provocative, informative, and engaging style that has earned Johnson fans around the globe.

Brainwash: The Secret History of Mind Control


Dominic Streatfeild - 2006
    Army, MI5, MI6, and the British Intelligence Corps, acclaimed journalist Dominic Streatfeild traces the history of the world's most secret psychological procedure. From the cold war to the height of today's war on terror, groups as dissimilar as armies, religious cults, and advertising agencies have been accused of brainwashing. But what does this mean?Is it possible to erase memories or to implant them artificially? Do heavy-metal records contain subliminal messages? Do religious cults brainwash recruits? What were the CIA and MI6 doing with LSD in the 1950s? How far have the world's militaries really gone?From the author of the definitive history of cocaine, Brainwash is required reading in an era of cutting-edge and often controversial interrogation practices. More than just an examination of the techniques used by the CIA, the KGB, and the Taliban, it is also a gripping, full history of the heated efforts to master the elusive, secret techniques of mind control.

What We Cannot Know: Explorations at the Edge of Knowledge


Marcus du Sautoy - 2016
    But are there limits to what we can discover about our physical universe?In this very personal journey to the edges of knowledge, Marcus du Sautoy investigates how leading experts in fields from quantum physics and cosmology, to sensory perception and neuroscience, have articulated the current lie of the land. In doing so, he travels to the very boundaries of understanding, questioning contradictory stories and consulting cutting edge data.Is it possible that we will one day know everything? Or are there fields of research that will always lie beyond the bounds of human comprehension? And if so, how do we cope with living in a universe where there are things that will forever transcend our understanding?In What We Cannot Know, Marcus du Sautoy leads us on a thought-provoking expedition to the furthest reaches of modern science. Prepare to be taken to the edge of knowledge to find out if there’s anything we truly cannot know.

The Varieties of Scientific Experience: A Personal View of the Search for God


Carl Sagan - 2006
     Carl Sagan is considered one of the greatest scientific minds of our time. His remarkable ability to explain science in terms easily understandable to the layman in bestselling books such as Cosmos, The Dragons of Eden, and The Demon-Haunted World won him a Pulitzer Prize and placed him firmly next to Isaac Asimov, Stephen Jay Gould, and Oliver Sachs as one of the most important and enduring communicators of science. In December 2006 it will be the tenth anniversary of Sagan's death, and Ann Druyan, his widow and longtime collaborator, will mark the occasion by releasing Sagan's famous "Gifford Lectures in Natural Theology," The Varieties of Scientific Experience: A Personal View of the Search for God. The chance to give the Gifford Lectures is an honor reserved for the most distinguished scientists and philosophers of our civilization. In 1985, on the grand occasion of the centennial of the lectureship, Carl Sagan was invited to give them. He took the opportunity to set down in detail his thoughts on the relationship between religion and science as well as to describe his own personal search to understand the nature of the sacred in the vastness of the cosmos. The Varieties of Scientific Experience, edited, updated and with an introduction by Ann Druyan, is a bit like eavesdropping on a delightfully intimate conversation with the late great astronomer and astrophysicist. In his charmingly down-to-earth voice, Sagan easily discusses his views on topics ranging from manic depression and the possibly chemical nature of transcendance to creationism and so-called intelligent design to the likelihood of intelligent life on other planets to the likelihood of nuclear annihilation of our own to a new concept of science as "informed worship." Exhibiting a breadth of intellect nothing short of astounding, he illuminates his explanations with examples from cosmology, physics, philosophy, literature, psychology, cultural anthropology, mythology, theology, and more. Sagan's humorous, wise, and at times stunningly prophetic observations on some of the greatest mysteries of the cosmos have the invigorating effect of stimulating the intellect, exciting the imagination, and reawakening us to the grandeur of life in the cosmos.

Turbulent Mirror: An Illustrated Guide to Chaos Theory and the Science of Wholeness


John P. Briggs - 1989
    But now, with the aid of high-speed computers, scientists have been able to penetrate a reality that is changing the way we perceive the universe. Their findings -- the basis for chaos theory -- represent one of the most exciting scientific pursuits of our time.No better introduction to this find could be found than John Briggs and F. David Peat's Turbulent Mirror. Together, they explore the many faces of chaos and reveal how its law direct most of the processes of everyday life and how it appears that everything in the universe is interconnected -- discovering an "emerging science of wholeness."Turbulent Mirror introduces us to the scientists involved in study this endlessly strange field; to the theories that are turning our perception of the world on its head; and to the discoveries in mathematics, biology, and physics that are heralding a revolution more profound than the one responsible for producing the atomic bomb. With practical applications ranging from the control of traffic flow and the development of artifical intelligence to the treatment of heart attacks and schizophrenia, chaos promises to be an increasingly rewarding area of inquiry -- of interest to everyone.

The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science


Richard Holmes - 2008
    It has been inspired by the scientific ferment that swept through Britain at the end of the 18th century, and which Holmes now radically redefines as 'the revolution of Romantic Science'.

The Big Questions: Tackling the Problems of Philosophy with Ideas from Mathematics, Economics and Physics


Steven E. Landsburg - 2009
    Stimulating, illuminating, and always surprising, The Big Questions challenges readers to re-evaluate their most fundamental beliefs and reveals the relationship between the loftiest philosophical quests and our everyday lives.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.