Book picks similar to
فلسفة الكوانتم by Roland Omnès
philosophy
science
physics
non-fiction
Nothing: A Very Short Introduction
Frank Close - 2009
Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
Dance of the Photons: From Einstein to Quantum Teleportation
Anton Zeilinger - 2003
Accordingly, he once derided as "spooky action at a distance" the notion that two elementary particles far removed from each other could nonetheless influence each other's properties—a hypothetical phenomenon his fellow theorist Erwin Schrödinger termed "quantum entanglement."In a series of ingenious experiments conducted in various locations—from a dank sewage tunnel under the Danube River to the balmy air between a pair of mountain peaks in the Canary Islands—the author and his colleagues have demonstrated the reality of such entanglement using photons, or light quanta, created by laser beams. In principle the lessons learned may be applicable in other areas, including the eventual development of quantum computers.
Why Evolution Is True
Jerry A. Coyne - 2008
In all the current highly publicized debates about creationism and its descendant "intelligent design," there is an element of the controversy that is rarely mentioned—the "evidence," the empirical truth of evolution by natural selection. Even Richard Dawkins and Stephen Jay Gould, while extolling the beauty of evolution and examining case studies, have not focused on the evidence itself. Yet the proof is vast, varied, and magnificent, drawn from many different fields of science. Scientists are observing species splitting into two and are finding more and more fossils capturing change in the past—dinosaurs that have sprouted feathers, fish that have grown limbs. Why Evolution Is True weaves together the many threads of modern work in genetics, paleontology, geology, molecular biology, and anatomy that demonstrate the "indelible stamp" of the processes first proposed by Darwin. In crisp, lucid prose accessible to a wide audience, Why Evolution Is True dispels common misunderstandings and fears about evolution and clearly confirms that this amazing process of change has been firmly established as a scientific truth.
Alice in Quantumland: An Allegory of Quantum Physics
Robert Gilmore - 1994
Through the allegory of Alice's adventures and encounters, Gilmore makes the essential features of the quantum world clear and accessible. It is a thrilling introduction to some essential, often difficult-to-grasp concepts about the world we inhabit.
The Purpose-Guided Universe: Believing in Einstein, Darwin, and God
Bernard Haisch - 2010
Bernard Haisch contends that there is a purpose and an underlying intelligence behind the Universe, one that is consistent with modern science, especially the Big Bang and evolution. It is based on recent discoveries that there are numerous coincidences and fine-tunings of the laws of nature that seem extraordinarily unlikely.A more rational concept of God is called for. As astrophysicist Sir James Jeans wrote, "the Universe begins to look more like a great thought than like a great machine."Despite bestsellers by Christopher Hitchens, Richard Dawkins, and Sam Harris that have denounced the evils of religion and proclaimed that science has shown that there is no God, The Purpose-Guided Universe shows how one can believe in God and science.
Fields of Color: The theory that escaped Einstein
Rodney A. Brooks - 2010
QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.
The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design
Richard Dawkins - 1986
No two covers are exactly alike.Acclaimed as the most influential work on evolution written in the last hundred years, The Blind Watchmaker offers an inspiring and accessible introduction to one of the most important scientific discoveries of all time. A brilliant and controversial book which demonstrates that evolution by natural selection - the unconscious, automatic, blind yet essentially non-random process discovered by Darwin - is the only answer to the biggest question of all: why do we exist?
Philosophy of Science: A Very Short Introduction
Samir Okasha - 2002
He also looks at philosophical issues in particular sciences, including the problem of classification in biology, and the nature of space and time in physics. The final chapter touches on the conflicts between science and religion, and explores whether science is ultimately a good thing.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
The Character of Physical Law
Richard P. Feynman - 1964
He maintains at the outset that the importance of a physical law isn't "how clever we are to have found it out, but...how clever nature is to pay attention to it" & tends his discussions toward a final exposition of the elegance & simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, The Character of Physical Law is a statement of what is most remarkable in nature. His enlightened approach, wit & enthusiasm make this a memorable exposition of the scientist's craft. The Law of Gravitation is the principal example. Relating the details of its discovery & stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics & physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of axioms. The principles of conservation, symmetry & time-irreversibility are then considered in relation to developments in classical & modern physics. In his final lecture he develops his own analysis of the process & future of scientific discovery. Like any set of oral reflections, The Character of Physical Law has value as a demonstration of a mind in action. The reader is particularly lucky in Feynman. One of the most eminent & imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He's best known for work on the quantum theory of the electromagnetic field, as well as for later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for an "outstanding contribution to knowledge in mathematical & physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society & was awarded the Nobel Prize.
One, Two, Three...Infinity: Facts and Speculations of Science
George Gamow - 1947
. . full of intellectual treats and tricks, of whimsy and deep scientific philosophy. It is highbrow entertainment at its best, a teasing challenge to all who aspire to think about the universe." — New York Herald TribuneOne of the world's foremost nuclear physicists (celebrated for his theory of radioactive decay, among other accomplishments), George Gamow possessed the unique ability of making the world of science accessible to the general reader.He brings that ability to bear in this delightful expedition through the problems, pleasures, and puzzles of modern science. Among the topics scrutinized with the author's celebrated good humor and pedagogical prowess are the macrocosm and the microcosm, theory of numbers, relativity of space and time, entropy, genes, atomic structure, nuclear fission, and the origin of the solar system.In the pages of this book readers grapple with such crucial matters as whether it is possible to bend space, why a rocket shrinks, the "end of the world problem," excursions into the fourth dimension, and a host of other tantalizing topics for the scientifically curious. Brimming with amusing anecdotes and provocative problems, One Two Three . . . Infinity also includes over 120 delightful pen-and-ink illustrations by the author, adding another dimension of good-natured charm to these wide-ranging explorations.Whatever your level of scientific expertise, chances are you'll derive a great deal of pleasure, stimulation, and information from this unusual and imaginative book. It belongs in the library of anyone curious about the wonders of the scientific universe. "In One Two Three . . . Infinity, as in his other books, George Gamow succeeds where others fail because of his remarkable ability to combine technical accuracy, choice of material, dignity of expression, and readability." — Saturday Review of Literature
Space-time and beyond : toward an explanation of the unexplainable
Bob Toben - 1975
Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary
Quantum Enigma: Physics Encounters Consciousness
Bruce Rosenblum - 2006
Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.
The God Effect: Quantum Entanglement, Science's Strangest Phenomenon
Brian Clegg - 2006
Once two particles are entangled, a change to one of them is reflected---instantly---in the other, be they in the same lab or light-years apart. So counterintuitive is this phenomenon and its implications that Einstein himself called it "spooky" and thought that it would lead to the downfall of quantum theory. Yet scientists have since discovered that quantum entanglement, the "God Effect," was one of Einstein's few---and perhaps one of his greatest---mistakes. What does it mean? The possibilities offered by a fuller understanding of the nature of entanglement read like something out of science fiction: communications devices that could span the stars, codes that cannot be broken, computers that dwarf today's machines in speed and power, teleportation, and more. In The God Effect, veteran science writer Brian Clegg has written an exceptionally readable and fascinating (and equation-free) account of entanglement, its history, and its application. Fans of Brian Greene and Amir Aczel and those interested in the marvelous possibilities coming down the quantum road will find much to marvel, illuminate, and delight.
The Quantum World: Quantum Physics for Everyone
Kenneth W. Ford - 2004
Ford shows us in The Quantum World, the laws governing the very small and the very swift defy common sense and stretch our minds to the limit. Drawing on a deep familiarity with the discoveries of the twentieth century, Ford gives an appealing account of quantum physics that will help the serious reader make sense of a science that, for all its successes, remains mysterious. In order to make the book even more suitable for classroom use, the author, assisted by Diane Goldstein, has included a new section of Quantum Questions at the back of the book. A separate answer manual to these 300+ questions is available; visit The Quantum World website for ordering information.There is also a cloth edition of this book, which does not include the Quantum Questions included in this paperback edition.
Schrodinger's Rabbits: The Many Worlds of Quantum
Colin Bruce - 2004
But recent technological advances have made the question both practical and urgent. A brilliantly imaginative group of physicists at Oxford University have risen to the challenge. This is their story. At long last, there is a sensible way to think about quantum mechanics. The new view abolishes the need to believe in randomness, long-range spooky forces, or conscious observers with mysterious powers to collapse cats into a state of life or death. But the new understanding comes at a price: we must accept that we live in a multiverse wherein countless versions of reality unfold side-by-side. The philosophical and personal consequences of this are awe-inspiring.The new interpretation has allowed imaginative physicists to conceive of wonderful new technologies: measuring devices that effectively share information between worlds and computers that can borrow the power of other worlds to perform calculations. Step by step, the problems initially associated with the original many-worlds formulation have been addressed and answered so that a clear but startling new picture has emerged.Just as Copenhagen was the centre of quantum discussion a lifetime ago, so Oxford has been the epicenter of the modern debate, with such figures as Roger Penrose and Anton Zeilinger fighting for single-world views, and David Deutsch, Lev Vaidman and a host of others for many-worlds.An independent physicist living in Oxford, Bruce has had a ringside seat to the debate. In his capable hands, we understand why the initially fantastic sounding many-worlds view is not only a useful way to look at things, but logically compelling. Parallel worlds are as real as the distant galaxies detected by the Hubble Space Telescope, even though the evidence for their existence may consist only of a few photons.