The Definitive Guide to Django: Web Development Done Right


Adrian Holovaty - 2007
    In "The Definitive Guide to Django: Web Development Done Right," Adrian Holovaty, one of Django's creators, and Django lead developer Jacob KaplanMoss show you how they use this framework to create awardwinning web sites. Over the course of three parts, they guide you through the creation of a web application reminiscent of chicagocrime.org.The first part of the book introduces Django fundamentals like installation and configuration. You'll learn about creating the components that power a Django-driven web site. The second part delves into the more sophisticated features of Django, like outputting nonHTML content (such as RSS feeds and PDFs), plus caching and user management. The third part serves as a detailed reference to Django's many configuration options and commands. The book even includes seven appendices for looking up configurations options and commands. In all, this book provides the ultimate tutorial and reference to the popular Django framework. What you'll learnThe first half of this book explains in-depth how to build web applications using Django including the basics of dynamic web pages, the Django templating system interacting with databases, and web forms. The second half of this book discusses higher-level concepts such as caching, security, and how to deploy Django. The appendices form a reference for the commands and configurations available in Django. Who this book is forAnyone who wants to use the powerful Django framework to build dynamic web sites quickly and easily! "

From Mathematics to Generic Programming


Alexander A. Stepanov - 2014
    If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge

The Quick Python Book


Naomi R. Ceder - 2000
    This updated edition includes all the changes in Python 3, itself a significant shift from earlier versions of Python.The book begins with basic but useful programs that teach the core features of syntax, control flow, and data structures. It then moves to larger applications involving code management, object-oriented programming, web development, and converting code from earlier versions of Python.True to his audience of experienced developers, the author covers common programming language features concisely, while giving more detail to those features unique to Python.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

The Google Resume: How to Prepare for a Career and Land a Job at Apple, Microsoft, Google, or Any Top Tech Company


Gayle Laakmann McDowell - 2011
    Gayle Laakmann McDowell worked in Google Engineering for three years, where she served on the hiring committee and interviewed over 120 candidates. She interned for Microsoft and Apple, and interviewed with and received offers from ten tech firms. If you're a student, you'll learn what to study and how to prepare while in school, as well as what career paths to consider. If you're a job seeker, you'll get an edge on your competition by learning about hiring procedures and making yourself stand out from other candidates. Covers key concerns like what to major in, which extra-curriculars and other experiences look good, how to apply, how to design and tailor your resume, how to prepare for and excel in the interview, and much more Author was on Google's hiring committee; interned at Microsoft and Apple; has received job offers from more than 10 tech firms; and runs CareerCup.com, a site devoted to tech jobs Get the only comprehensive guide to working at some of America's most dynamic, innovative, and well-paying tech companies with The Google Resume.

Python Programming: An Introduction to Computer Science


John Zelle - 2003
    It takes a fairly traditional approach, emphasizing problem solving, design, and programming as the core skills of computer science. However, these ideas are illustrated using a non-traditional language, namely Python. Although I use Python as the language, teaching Python is not the main point of this book. Rather, Python is used to illustrate fundamental principles of design and programming that apply in any language or computing environment. In some places, I have purposely avoided certain Python features and idioms that are not generally found in other languages. There are already many good books about Python on the market; this book is intended as an introduction to computing. Features include the following: *Extensive use of computer graphics. *Interesting examples. *Readable prose. *Flexible spiral coverage. *Just-in-time object coverage. *Extensive end-of-chapter problems.

Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

High Performance Python: Practical Performant Programming for Humans


Micha Gorelick - 2013
    Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation.How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more.Get a better grasp of NumPy, Cython, and profilersLearn how Python abstracts the underlying computer architectureUse profiling to find bottlenecks in CPU time and memory usageWrite efficient programs by choosing appropriate data structuresSpeed up matrix and vector computationsUse tools to compile Python down to machine codeManage multiple I/O and computational operations concurrentlyConvert multiprocessing code to run on local or remote clustersDeploy code faster using tools like Docker

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence


Pramod J. Sadalage - 2012
    Advocates of NoSQL databases claim they can be used to build systems that are more performant, scale better, and are easier to program." ""NoSQL Distilled" is a concise but thorough introduction to this rapidly emerging technology. Pramod J. Sadalage and Martin Fowler explain how NoSQL databases work and the ways that they may be a superior alternative to a traditional RDBMS. The authors provide a fast-paced guide to the concepts you need to know in order to evaluate whether NoSQL databases are right for your needs and, if so, which technologies you should explore further. The first part of the book concentrates on core concepts, including schemaless data models, aggregates, new distribution models, the CAP theorem, and map-reduce. In the second part, the authors explore architectural and design issues associated with implementing NoSQL. They also present realistic use cases that demonstrate NoSQL databases at work and feature representative examples using Riak, MongoDB, Cassandra, and Neo4j. In addition, by drawing on Pramod Sadalage's pioneering work, "NoSQL Distilled" shows how to implement evolutionary design with schema migration: an essential technique for applying NoSQL databases. The book concludes by describing how NoSQL is ushering in a new age of Polyglot Persistence, where multiple data-storage worlds coexist, and architects can choose the technology best optimized for each type of data access.

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Becoming a Better Programmer


Pete Goodliffe - 2014
    Code Craft author Pete Goodliffe presents a collection of useful techniques and approaches to the art and craft of programming that will help boost your career and your well-being.Goodliffe presents sound advice that he's learned in 15 years of professional programming. The book's standalone chapters span the range of a software developer's life--dealing with code, learning the trade, and improving performance--with no language or industry bias. Whether you're a seasoned developer, a neophyte professional, or a hobbyist, you'll find valuable tips in five independent categories:Code-level techniques for crafting lines of code, testing, debugging, and coping with complexityPractices, approaches, and attitudes: keep it simple, collaborate well, reuse, and create malleable codeTactics for learning effectively, behaving ethically, finding challenges, and avoiding stagnationPractical ways to complete things: use the right tools, know what "done" looks like, and seek help from colleaguesHabits for working well with others, and pursuing development as a social activity

Understanding Distributed Systems: What every developer should know about large distributed applications


Roberto Vitillo - 2021
    It's not that there is a lack of information out there. You can find academic papers, engineering blogs, and even books on the subject. The problem is that the available information is spread out all over the place, and if you were to put it on a spectrum from theory to practice, you would find a lot of material at the two ends, but not much in the middle.That is why I decided to write a book to teach the fundamentals of distributed systems so that you don’t have to spend countless hours scratching your head to understand how everything fits together. This is the guide I wished existed when I first started out, and it's based on my experience building large distributed systems that scale to millions of requests per second and billions of devices.If you develop the back-end of web or mobile applications (or would like to!), this book is for you. When building distributed systems, you need to be familiar with the network stack, data consistency models, scalability and reliability patterns, and much more. Although you can build applications without knowing any of that, you will end up spending hours debugging and re-designing their architecture, learning lessons that you could have acquired in a much faster and less painful way.

How to Think About Analysis


Lara Alcock - 2014
    It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the students existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research-based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.

The Road to React


Robin Wieruch - 2017
    This book uses the common sense of these roads and weaves it into the implementation of an attractive app. You will build a Hacker News React app. On the road you will learn ES6, React with all its basics and advanced concepts and internal state management.' to 'A lot of roadmaps exist on how to master React. This book uses the common sense of these roads and weaves it into the implementation of an attractive app. You will build a Hacker News React app. On the road you will learn ES6, React with all its basics and advanced concepts and internal state management. http://www.robinwieruch.de/the-road-t...

Reactive Design Patterns


Roland Kuhn - 2014
    The Reactive Application model addresses these demands through new patterns designed to "react" effectively to user and system events, changes in load, competition for shared system resources, and unanticipated failures. Although reactive design patterns can be implemented using standard enterprise development tools, you best realize the benefits when you pair them with a functional programming language like Scala and an Actor-based concurrency system like Akka.Reactive Design Patterns is a clearly-written guide for building event-driven distributed systems that are resilient, responsive, and scalable. Written by the authors of the Reactive Manifesto, this book teaches you to apply reactive design principles to the real problems of distributed application development. You'll discover technologies and paradigms that can be used to build reactive applications including Akka and other actor-based systems, functional programming, replication and distribution, and implementation techniques such as futures, iteratees, and reactive streams. While the book presents concrete examples in Scala, Java, JavaScript, and Erlang, the primary goal is to introduce patterns and best practices that you can use to apply reactive principles to common problems you'll face when building distributed systems.WHAT'S INSIDE* Discover best practices and patterns for building responsive applications* Build applications that can withstand hardware or software failure at any level* Patterns for fault tolerance, scalability, and responsiveness* Maximize multicore hardware using asynchronous and event-driven solutions* Scale applications under tremendous loadReaders should be familiar with a standard programming language like Java, C++ or C# and be comfortable with the basics of distributed systems. Software engineers and architects will learn how to avoid common pitfalls and apply patterns for solving day-to-day problems in a fault-tolerant and scalable way to maximize their application's responsiveness to users and clients. Project leaders and CTOs will gain a deeper understanding of the philosophy behind resilience and scalability in distributed systems, as well as their limitations, challenges and benefits.