Machine Learning With Random Forests And Decision Trees: A Mostly Intuitive Guide, But Also Some Python
Scott Hartshorn - 2016
They are typically used to categorize something based on other data that you have. The purpose of this book is to help you understand how Random Forests work, as well as the different options that you have when using them to analyze a problem. Additionally, since Decision Trees are a fundamental part of Random Forests, this book explains how they work. This book is focused on understanding Random Forests at the conceptual level. Knowing how they work, why they work the way that they do, and what options are available to improve results. This book covers how Random Forests work in an intuitive way, and also explains the equations behind many of the functions, but it only has a small amount of actual code (in python). This book is focused on giving examples and providing analogies for the most fundamental aspects of how random forests and decision trees work. The reason is that those are easy to understand and they stick with you. There are also some really interesting aspects of random forests, such as information gain, feature importances, or out of bag error, that simply cannot be well covered without diving into the equations of how they work. For those the focus is providing the information in a straight forward and easy to understand way.
Python Testing with Pytest: Simple, Rapid, Effective, and Scalable
Brian Okken - 2017
The pytest testing framework helps you write tests quickly and keep them readable and maintainable - with no boilerplate code. Using a robust yet simple fixture model, it's just as easy to write small tests with pytest as it is to scale up to complex functional testing for applications, packages, and libraries. This book shows you how.For Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability - with no boilerplate code.With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, connect it to continuous integration systems, and use it in tandem with tox, mock, coverage, unittest, and doctest.Write simple, maintainable tests that elegantly express what you're testing and why.What You Need: The examples in this book are written using Python 3.6 and pytest 3.0. However, pytest 3.0 supports Python 2.6, 2.7, and Python 3.3-3.6.
Writing Idiomatic Python 2.7.3
Jeff Knupp - 2013
Each idiom comes with a detailed description, example code showing the "wrong" way to do it, and code for the idiomatic, "Pythonic" alternative. *This version of the book is for Python 2.7.3+. There is also a Python 3.3+ version available.* "Writing Idiomatic Python" contains the most common and important Python idioms in a format that maximizes identification and understanding. Each idiom is presented as a recommendation to write some commonly used piece of code. It is followed by an explanation of why the idiom is important. It also contains two code samples: the "Harmful" way to write it and the "Idiomatic" way. * The "Harmful" way helps you identify the idiom in your own code. * The "Idiomatic" way shows you how to easily translate that code into idiomatic Python. This book is perfect for you: * If you're coming to Python from another programming language * If you're learning Python as a first programming language * If you're looking to increase the readability, maintainability, and correctness of your Python code What is "Idiomatic" Python? Every programming language has its own idioms. Programming language idioms are nothing more than the generally accepted way of writing a certain piece of code. Consistently writing idiomatic code has a number of important benefits: * Others can read and understand your code easily * Others can maintain and enhance your code with minimal effort * Your code will contain fewer bugs * Your code will teach others to write correct code without any effort on your part
Introducing Python: Modern Computing in Simple Packages
Bill Lubanovic - 2013
In addition to giving a strong foundation in the language itself, Lubanovic shows how to use it for a range of applications in business, science, and the arts, drawing on the rich collection of open source packages developed by Python fans.It's impressive how many commercial and production-critical programs are written now in Python. Developed to be easy to read and maintain, it has proven a boon to anyone who wants applications that are quick to write but robust and able to remain in production for the long haul.This book focuses on the current version of Python, 3.x, while including sidebars about important differences with 2.x for readers who may have to deal with programs in that version.
Pro Django
Marty Alchin - 2008
Learn how to leverage the Django web framework to its full potential in this advanced tutorial and reference. Endorsed by Django, Pro Django more or less picks up where The Definitive Guide to Django left off and examines in greater detail the unusual and complex problems that Python web application developers can face and how to solve them.Provides in-depth information about advanced tools and techniques available in every Django installation Runs the gamut from the theory of Django's internal operations to actual code that solves real-world problems for high-volume environments Goes above and beyond other books, leaving the basics behind Shows how Django can do things even its core developers never dreamed possible
Dive Into Python 3
Mark Pilgrim - 2009
As in the original book, Dive Into Python, each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end.This book includes:Example programs completely rewritten to illustrate powerful new concepts now available in Python 3: sets, iterators, generators, closures, comprehensions, and much more A detailed case study of porting a major library from Python 2 to Python 3 A comprehensive appendix of all the syntactic and semantic changes in Python 3 This is the perfect resource for you if you need to port applications to Python 3, or if you like to jump into languages fast and get going right away.
Elements of Programming Interviews in Python: The Insiders' Guide
Adnan Aziz - 2016
See the website for links to the C++ and Java version.Have you ever...Wanted to work at an exciting futuristic company?Struggled with an interview problem thatcould have been solved in 15 minutes?Wished you could study real-world computing problems?If so, you need to read Elements of Programming Interviews (EPI).EPI is your comprehensive guide to interviewing for software development roles.The core of EPI is a collection of over 250 problems with detailed solutions. The problems are representative of interview questions asked at leading software companies. The problems are illustrated with 200 figures, 300 tested programs, and 150 additional variants.The book begins with a summary of the nontechnical aspects of interviewing, such as strategies for a great interview, common mistakes, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. We also provide a summary of data structures, algorithms, and problem solving patterns.Coding problems are presented through a series of chapters on basic and advanced data structures, searching, sorting, algorithm design principles, and concurrency. Each chapter stars with a brief introduction, a case study, top tips, and a review of the most important library methods. This is followed by a broad and thought-provoking set of problems.A practical, fun approach to computer science fundamentals, as seen through the lens of common programming interview questions. Jeff Atwood/Co-founder, Stack Overflow and Discourse
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Architecture Patterns with Python: Enabling Test-Driven Development, Domain-Driven Design, and Event-Driven Microservices
Harry Percival - 2020
Many Python developers are now taking an interest in high-level software architecture patterns such as hexagonal/clean architecture, event-driven architecture, and strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn't always straightforward.With this practical guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity. Each pattern is illustrated with concrete examples in idiomatic Python that explain how to avoid some of the unnecessary verbosity of Java and C# syntax. You'll learn how to implement each of these patterns in a Pythonic way.Architectural design patterns include:Dependency inversion, and its links to ports and adapters (hexagonal/clean architecture)Domain-driven design's distinction between entities, value objects, and aggregatesRepository and Unit of Work patterns for persistent storageEvents, commands, and the message busCommand Query Responsibility Segregation (CQRS)Event-driven architecture and reactive microservices
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
The Hitchhiker's Guide to Python: Best Practices for Development
Kenneth Reitz - 2016
More than any other language, Python was created with the philosophy of simplicity and parsimony. Now 25 years old, Python has become the primary or secondary language (after SQL) for many business users. With popularity comes diversity--and possibly dilution.This guide, collaboratively written by over a hundred members of the Python community, describes best practices currently used by package and application developers. Unlike other books for this audience, The Hitchhiker's Guide is light on reusable code and heavier on design philosophy, directing the reader to excellent sources that already exist.
Think Python
Allen B. Downey - 2002
It covers the basics of computer programming, including variables and values, functions, conditionals and control flow, program development and debugging. Later chapters cover basic algorithms and data structures.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Hello World! Computer Programming for Kids and Other Beginners
Warren Sande - 2008
Why not learn to talk to your computer in its own language? Whether you want to write games, start a business, or you're just curious, learning to program is a great place to start. Plus, programming is fun!Hello World! provides a gentle but thorough introduction to the world of computer programming. It's written in language a 12-year-old can follow, but anyone who wants to learn how to program a computer can use it. Even adults. Written by Warren Sande and his son, Carter, and reviewed by professional educators, this book is kid-tested and parent-approved.You don't need to know anything about programming to use the book. But you should know the basics of using a computer--e-mail, surfing the web, listening to music, and so forth. If you can start a program and save a file, you should have no trouble using this book.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.