Wrinkles in Time


George Smoot - 1993
    Dr. George Smoot, a distinguished cosmologist and adventurer whose quest for cosmic knowledge had taken him from the Brazilian rain forest to the South Pole, unveiled his momentous discovery, bringing to light the very nature of the universe. For anyone who has ever looked up at the night sky and wondered, for anyone who has ever longed to pull aside the fabric of the universe for a glimpse of what lies behind it. Wrinkles in Time is the story of Smoot's search to uncover the cosmic seeds of the universe.Wrinkles in Time is the Double Helix of cosmology, an intimate look at the inner world of men and women who ask. "Why are we here?" It tells the story of George Smoot's dogged pursuit of the cosmic wrinkles in the frozen wastes of Antarctica, on mountaintops, in experiments borne aloft aboard high-altitude balloons, U-2 spy planes, and finally a space satellite. Wrinkles in Time presents the hard science behind the structured violence of the big bang theory through breathtakingly clear, lucid images and meaningful comparisons. Scientists and nonscientists alike can follow with rapt attention the story of how, in a fiery creation, wrinkles formed in space ultimately to become stars, galaxies, and even greater delicate structures. Anyone can appreciate the implications of a universe whose end is written in its beginnings - whose course developed according to a kind of cosmic DNA, which guided the universe from simplicity and symmetry to ever-greater complexity and structure. As controversial as it may seem today, Wrinkles in Time reveals truths that, in an earlier century, would have doomed its proclaimers to the fiery stake. For four thousand years some people have accepted the Genesis account of cosmic origin; for most of this century, scientists debated two rival scientific explanations known as the steady state and big bang theories. And now, Wrinkles in Time tells what really happened. The personal story behind astrophysicist George Smoot's incredible discovery of the origin of the cosmos, hailed by Stephen Hawking as "The scientific discovery of the century, if not of all time."

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

A Short History of Nearly Everything


Bill Bryson - 2003
    Taking as territory everything from the Big Bang to the rise of civilization, Bryson seeks to understand how we got from there being nothing at all to there being us. To that end, he has attached himself to a host of the world’s most advanced (and often obsessed) archaeologists, anthropologists, and mathematicians, travelling to their offices, laboratories, and field camps. He has read (or tried to read) their books, pestered them with questions, apprenticed himself to their powerful minds. A Short History of Nearly Everything is the record of this quest, and it is a sometimes profound, sometimes funny, and always supremely clear and entertaining adventure in the realms of human knowledge, as only Bill Bryson can render it. Science has never been more involving or entertaining.

Consilience: The Unity of Knowledge


Edward O. Wilson - 1998
    In Consilience  (a word that originally meant "jumping together"), Edward O. Wilson renews the Enlightenment's search for a unified theory of knowledge in disciplines that range from physics to biology, the social sciences and the humanities.Using the natural sciences as his model, Wilson forges dramatic links between fields. He explores the chemistry of the mind and the genetic bases of culture. He postulates the biological principles underlying works of art from cave-drawings to Lolita. Presenting the latest findings in prose of wonderful clarity and oratorical eloquence, and synthesizing it into a dazzling whole, Consilience is science in the path-clearing traditions of Newton, Einstein, and Richard Feynman.

The Particles of the Universe


Jeff Yee - 2012
    Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.

Introductory Astronomy and Astrophysics


Michael Zeilik - 1987
    It has an algebra and trigonometry prerequisite, but calculus is preferred.

Einstein's War: How Relativity Triumphed Amid the Vicious Nationalism of World War I


Matthew Stanley - 2019
    The neatly printed equations on the scrap of paper outlined his world-changing theory of general relativity, the first complete revision of our conception of the universe since Isaac Newton.Until then, Einstein's masterpiece of time and space had been trapped behind the physical and ideological lines of battle, unknown. Many Britons were rejecting anything German, but Eddington realized the importance of the letter: perhaps Einstein's esoteric theory could not only change the foundations of science but also lead to international co-operation in a time of brutal war.Few recognize how the Great War, the industrialized slaughter that bled Europe from 1914 to 1918, shaped Einstein's life and work. While Einstein never held a rifle, he formulated general relativity blockaded in Berlin, literally starving. His name is now synonymous with 'genius', but it was not an easy road.Einstein spent a decade creating relativity and his ascent to global celebrity owed much to against-the-odds international collaboration, including Eddington's globe-spanning expedition of 1919 - two years before they finally met - to catch a fleeting solar eclipse for a rare opportunity to confirm Einstein's bold prediction that light has weight.We usually think of scientific discovery as a flash of individual inspiration, but here we see it is the result of hard work, gambles and wrong turns. Einstein's War is a celebration of what science can offer when bigotry and nationalism are defeated. Using previously unknown sources and written like a thriller, it shows relativity being built brick-by-brick in front of us, as it happened 100 years ago.

I'm Working on That: A Trek from Science Fiction to Science Fact


William Shatner - 1996
    Over five decades, Star Trek's celebration of mankind's technical achievements and positive view of the future have earned it an enduring place in our global culture. Its scientific vision has also had a profound effect on the past thirty years of technological breakthroughs. Join William Shatner, the original captain of the Starship Enterprise, as he reveals how Star Trek has influenced and inspired some of our greatest scientific minds -- the people behind the future we will all share. In interviews with dozens of scientists we learn about the inventions that will revolutionise our lives and the discoveries that will make it truly possible to explore the last great frontier -- space. As one Nobel Laureate commented on being shown a wood and plastic model of the engine core from a Star Trek: The Next Generation starship: I'm working on that. From the technicalities of warp speed to real-life replicators to the likelihood of our being able to beam across continents, this always-informative book takes us on a fascinating and eye-opening voyage to

The Quantum Story: A History in 40 Moments


Jim Baggott - 2011
    From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it.Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents.Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it.This is quantum theory, and this book tells its story.Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes -- significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world.Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.

The Lagoon: How Aristotle Invented Science


Armand Marie Leroi - 2014
    He wrote vast volumes about animals. He described them, classified them, told us where and how they live and how they develop in the womb or in the egg. He founded a science. It can even be said that he founded science itself.In The Lagoon, acclaimed biologist Armand Marie Leroi recovers Aristotle’s science. He revisits Aristotle’s writings and the places where he worked. He goes to the eastern Aegean island of Lesbos to see the creatures that Aristotle saw, where he saw them. He explores Aristotle’s observations, his deep ideas, his inspired guesses—and the things he got wildly wrong. He shows how Aristotle’s science is deeply intertwined with his philosophical system and reveals that he was not only the first biologist, but also one of the greatest.The Lagoon is both a travelogue and a study of the origins of science. And it shows how a philosopher who lived almost two millennia ago still has so much to teach us today.

Galileo: A Very Short Introduction


Stillman Drake - 2001
    Galileo's own beautifully lucid arguments are used in this volume to show how his scientific method was utterly divorced from the Aristotelian approach to physics; it was based on a search not for causes but for laws. Galileo's methods had an overwhelming significance for the development of modern physics, and they led to a final parting of the ways between science and philosophy. Now, in this extraordinary and concise introduction, Drake provides a stimulating view of Galileo's life and works, providing a fresh perspective on Galileo's methodology and his final incrimination.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

The Book Nobody Read: Chasing the Revolutions of Nicolaus Copernicus


Owen Gingerich - 2004
    He traced the ownership of individual copies through the hands of saints, heretics, scalawags, and bibliomaniacs. He was called as the expert witness in the theft of one copy, witnessed the dramatic auction of another, and proves conclusively that "De revolutionibus" was as inspirational as it was revolutionary. Part biography of a book, part scientific exploration, part bibliographic detective story, "The Book Nobody Read" recolors the history of cosmology and offers new appreciation of the enduring power of an extraordinary book and its ideas.

In Search of the Ultimate Building Blocks


Gerard 't Hooft - 1992
    Gerard 't Hooft was closely involved in many of the advances in modern theoretical physics that led to improved understanding of elementary particles, and this is a first-hand account of one of the most creative and exciting periods of discovery in the history of physics. Using language a layperson can understand, this narrative touches on many central topics and ideas, such as quarks and quantum physics; supergravity, superstrings and superconductivity; the Standard Model and grand unification; eleven-dimensional space time and black holes. This fascinating personal account of the past thirty years in one of the most dramatic areas in twentieth-century physics will be of interest to professional physicists and physics students, as well as the educated general reader with an interest in one of the most exciting scientific detective stories ever.

Evolution: The History of an Idea


Peter J. Bowler - 1984
    This new edition has been entirely rewritten to take account of the latest work of historians and scientists. The sequence of chapters has been reconstructed in a way that will help students and general readers to understand the key phases in the development of modern evolutionism. The book's substantial bibliography has been updated to serve as a valuable introduction to the immense literature on this topic.

The Logic of Scientific Discovery


Karl Popper - 1934
    It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)