The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

Networks, Crowds, and Markets


David Easley - 2010
    This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.

Revolution in a Bottle: From Worm Poop to a Garbage Empire That Is Redefining Green Business


Tom Szaky - 2009
    calls "The coolest little startup in America." While a freshman at Princeton, Tom Szaky co- founded a company that recycles garbage into worm poop, liquefies it, then packages it in used soda bottles, creating TerraCycle Plant Food. Five years later, this all-natural, highly effective fertilizer is available in every Home Depot, Target,Wal?Mart, and more than 3000 other locations. It's a thrilling entrepreneurial success story-and just the beginning of what makes Revolution in a Bottle fascinating. Szaky argues for a new approach to business, an "ecocapitalism" based on a "triple bottom line." Every business, he says, should aspire to be good for people, good for the environment, and (last but definitely not least) good for profits. He shows how the first two goals can help the third. Many companies brag about being environmentally-friendly. But no one does it as effectively as TerraCycle. Now they're also reusing garbage to create new products, from bird feeders to tote bags, and even engaging major companies like Kraft and General Mills to sponsor their waste streams. In the spirit of TerraCycle, this book will be printed on 100% recycled materials. About the Cover: This may look like a book jacket, but it's actually your very own upcycling container. Tom Szaky, founder of TerraCycle, is dedicated to eliminating the concept of waste. His firm works with other companies to collect and reuse nonrecyclable packaging and upcycle it into eco-friendly affordable products. And they want your help. One such company is Bear Naked(r), an all-natural food and lifestyle brand that has partnered with Terra-Cycle to operate the Bear Naked(r) Bag Brigade. This free program makes a donation to a school or nonprofit for every bag a participant collects. Now you can join in by using your book jacket as an envelope. See the back flap for instructions-it's easy. Then fill it with a used Bear Naked(r) granola bag and drop it in a mailbox to become a part of TerraCycle's eco- revolution! Bear Naked(r) will even donate $1 to plant a tree in American Forests, up to $5,000. Offer expires 12/31/09 or after the first 25,000 copies are sold, whichever comes first.

An Introduction to General Systems Thinking


Gerald M. Weinberg - 1975
    Used in university courses and professional seminars all over the world, the text has proven its ability to open minds and sharpen thinking.Originally published in 1975 and reprinted more than twenty times over a quarter century -- and now available for the first time from Dorset House Publishing -- the text uses clear writing and basic algebraic principles to explore new approaches to projects, products, organizations, and virtually any kind of system.Scientists, engineers, organization leaders, managers, doctors, students, and thinkers of all disciplines can use this book to dispel the mental fog that clouds problem-solving. As author Gerald M. Weinberg writes in the new preface to the Silver Anniversary Edition, "I haven’t changed my conviction that most people don’t think nearly as well as they could had they been taught some principles of thinking.”Now an award-winning author of nearly forty books spanning the entire software development life cycle, Weinberg had already acquired extensive experience as a programmer, manager, university professor, and consultant when this book was originally published.With helpful illustrations, numerous end-of-chapter exercises, and an appendix on a mathematical notation used in problem-solving, An Introduction to General Systems Thinking may be your most powerful tool in working with problems, systems, and solutions.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

The Origins of Order: Self-Organization and Selection in Evolution


Stuart A. Kauffman - 1993
    The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order that is widely observed throughout nature Kauffman argues that self-organization plays an important role in the Darwinian process of natural selection. Yet until now no systematic effort has been made to incorporate the concept of self-organization into evolutionary theory. The construction requirements which permit complex systems to adapt are poorly understood, as is the extent to which selection itself can yield systems able to adapt more successfully. This book explores these themes. It shows how complex systems, contrary to expectations, can spontaneously exhibit stunning degrees of order, and how this order, in turn, is essential for understanding the emergence and development of life on Earth. Topics include the new biotechnology of applied molecular evolution, with its important implications for developing new drugs and vaccines; the balance between order and chaos observed in many naturally occurring systems; new insights concerning the predictive power of statistical mechanics in biology; and other major issues. Indeed, the approaches investigated here may prove to be the new center around which biological science itself will evolve. The work is written for all those interested in the cutting edge of research in the life sciences.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

Drift into Failure: From Hunting Broken Components to Understanding Complex Systems


Sidney Dekker - 2011
    While pursuing success in a dynamic, complex environment with limited resources and multiple goal conflicts, a succession of small, everyday decisions eventually produced breakdowns on a massive scale. We have trouble grasping the complexity and normality that gives rise to such large events. We hunt for broken parts, fixable properties, people we can hold accountable. Our analyses of complex system breakdowns remain depressingly linear, depressingly componential - imprisoned in the space of ideas once defined by Newton and Descartes. The growth of complexity in society has outpaced our understanding of how complex systems work and fail. Our technologies have gotten ahead of our theories. We are able to build things - deep-sea oil rigs, jackscrews, collateralized debt obligations - whose properties we understand in isolation. But in competitive, regulated societies, their connections proliferate, their interactions and interdependencies multiply, their complexities mushroom. This book explores complexity theory and systems thinking to understand better how complex systems drift into failure. It studies sensitive dependence on initial conditions, unruly technology, tipping points, diversity - and finds that failure emerges opportunistically, non-randomly, from the very webs of relationships that breed success and that are supposed to protect organizations from disaster. It develops a vocabulary that allows us to harness complexity and find new ways of managing drift.

Pure Mathematics: A First Course


J.K. Backhouse - 1974
    This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.

Social Physics: How Good Ideas Spread— The Lessons from a New Science


Alex Pentland - 2014
    Over years of groundbreaking experiments, he has distilled remarkable discoveries significant enough to become the bedrock of a whole new scientific field: social physics. Humans have more in common with bees than we like to admit: We’re social creatures first and foremost. Our most important habits of action—and most basic notions of common sense—are wired into us through our coordination in social groups. Social physics is about idea flow, the way human social networks spread ideas and transform those ideas into behaviors. Thanks to the millions of digital bread crumbs people leave behind via smartphones, GPS devices, and the Internet, the amount of new information we have about human activity is truly profound. Until now, sociologists have depended on limited data sets and surveys that tell us how people say they think and behave, rather than what they actually do. As a result, we’ve been stuck with the same stale social structures—classes, markets—and a focus on individual actors, data snapshots, and steady states. Pentland shows that, in fact, humans respond much more powerfully to social incentives that involve rewarding others and strengthening the ties that bind than incentives that involve only their own economic self-interest. Pentland and his teams have found that they can study patterns of information exchange in a social network without any knowledge of the actual content of the information and predict with stunning accuracy how productive and effective that network is, whether it’s a business or an entire city. We can maximize a group’s collective intelligence to improve performance and use social incentives to create new organizations and guide them through disruptive change in a way that maximizes the good. At every level of interaction, from small groups to large cities, social networks can be tuned to increase exploration and engagement, thus vastly improving idea flow.  Social Physics will change the way we think about how we learn and how our social groups work—and can be made to work better, at every level of society. Pentland leads readers to the edge of the most important revolution in the study of social behavior in a generation, an entirely new way to look at life itself.

Sync: The Emerging Science of Spontaneous Order


Steven H. Strogatz - 2003
    Along the tidal rivers of Malaysia, thousands of fireflies congregate and flash in unison; the moon spins in perfect resonance with its orbit around the earth; our hearts depend on the synchronous firing of ten thousand pacemaker cells. While the forces that synchronize the flashing of fireflies may seem to have nothing to do with our heart cells, there is in fact a deep connection. Synchrony is a science in its infancy, and Strogatz is a pioneer in this new frontier in which mathematicians and physicists attempt to pinpoint just how spontaneous order emerges from chaos. From underground caves in Texas where a French scientist spent six months alone tracking his sleep-wake cycle, to the home of a Dutch physicist who in 1665 discovered two of his pendulum clocks swinging in perfect time, this fascinating book spans disciplines, continents, and centuries. Engagingly written for readers of books such as Chaos and The Elegant Universe, Sync is a tour-de-force of nonfiction writing.

The Logic of Life: The Rational Economics of an Irrational World


Tim Harford - 2008
    In this deftly reasoned book, a columnist for The Financial Times and Slate argues that, despite the everyday insanity, life is logical after all, and he explores the surprisingly rational choices that shape the world.

The Future of Everything: The Science of Prediction


David Orrell - 2006
    He asks how today's scientists can claim to predict future climate events when even three-day forecasts prove a serious challenge. Can we predict and control epidemics? Can we accurately foresee our financial future? Or will we only find out about tomorrow when tomorrow arrives?

Growth: From Microorganisms to Megacities


Vaclav Smil - 2019
    It governs the lives of microorganisms and galaxies; it shapes the capabilities of our extraordinarily large brains and the fortunes of our economies. Growth is manifested in annual increments of continental crust, a rising gross domestic product, a child's growth chart, the spread of cancerous cells. In this magisterial book, Vaclav Smil offers systematic investigation of growth in nature and society, from tiny organisms to the trajectories of empires and civilizations.Smil takes readers from bacterial invasions through animal metabolisms to megacities and the global economy. He begins with organisms whose mature sizes range from microscopic to enormous, looking at disease-causing microbes, the cultivation of staple crops, and human growth from infancy to adulthood. He examines the growth of energy conversions and man-made objects that enable economic activities—developments that have been essential to civilization. Finally, he looks at growth in complex systems, beginning with the growth of human populations and proceeding to the growth of cities. He considers the challenges of tracing the growth of empires and civilizations, explaining that we can chart the growth of organisms across individual and evolutionary time, but that the progress of societies and economies, not so linear, encompasses both decline and renewal. The trajectory of modern civilization, driven by competing imperatives of material growth and biospheric limits, Smil tells us, remains uncertain.

Intensive Science & Virtual Philosophy


Manuel DeLanda - 2002
    Here Manuel DeLanda makes sense of Deleuze for both analytic and continental thought, for both science and philosophy.