Ray Tracing in One Weekend (Ray Tracing Minibooks Book 1)


Peter Shirley - 2016
    Each mini-chapter adds one feature to the ray tracer, and by the end the reader can produce the image on the book cover. Details of basic ray tracing code architecture and C++ classes are given.

The Fourth Transformation: How Augmented Reality and Artificial Intelligence Change Everything


Robert Scoble - 2016
    

Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence


Kate Crawford - 2020
    It draws our attention away from the bright shiny objects of the new colonialism through elucidating the social, material and political dimensions of Artificial Intelligence.”—Geoffrey C. Bowker, University of California, Irvine What happens when artificial intelligence saturates political life and depletes the planet? How is AI shaping our understanding of ourselves and our societies? In this book Kate Crawford reveals how this planetary network is fueling a shift toward undemocratic governance and increased racial, gender, and economic inequality. Drawing on more than a decade of research, award‑winning science, and technology, Crawford reveals how AI is a technology of extraction: from the energy and minerals needed to build and sustain its infrastructure, to the exploited workers behind “automated” services, to the data AI collects from us.    Rather than taking a narrow focus on code and algorithms, Crawford offers us a political and a material perspective on what it takes to make artificial intelligence and where it goes wrong. While technical systems present a veneer of objectivity, they are always systems of power. This is an urgent account of what is at stake as technology companies use artificial intelligence to reshape the world.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Surfing Uncertainty: Prediction, Action, and the Embodied Mind


Andy Clark - 2015
    These predictions then initiate actions that structure our worlds and alter the very things we need to engage and predict. Clark takes us on a journey in discovering the circular causal flows and the self-structuring of the environment that define "the predictive brain." What emerges is a bold, new, cutting-edge vision that reveals the brain as our driving force in the daily surf through the waves of sensory stimulation.

Smarter Than Us: The Rise of Machine Intelligence


Stuart Armstrong - 2014
    The power of an artificial intelligence (AI) comes from its intelligence, not physical strength and laser guns. Humans steer the future not because we're the strongest or the fastest but because we're the smartest. When machines become smarter than humans, we'll be handing them the steering wheel. What promises—and perils—will these powerful machines present? Stuart Armstrong’s new book navigates these questions with clarity and wit.Can we instruct AIs to steer the future as we desire? What goals should we program into them? It turns out this question is difficult to answer! Philosophers have tried for thousands of years to define an ideal world, but there remains no consensus. The prospect of goal-driven, smarter-than-human AI gives moral philosophy a new urgency. The future could be filled with joy, art, compassion, and beings living worthwhile and wonderful lives—but only if we’re able to precisely define what a "good" world is, and skilled enough to describe it perfectly to a computer program.AIs, like computers, will do what we say—which is not necessarily what we mean. Such precision requires encoding the entire system of human values for an AI: explaining them to a mind that is alien to us, defining every ambiguous term, clarifying every edge case. Moreover, our values are fragile: in some cases, if we mis-define a single piece of the puzzle—say, consciousness—we end up with roughly 0% of the value we intended to reap, instead of 99% of the value.Though an understanding of the problem is only beginning to spread, researchers from fields ranging from philosophy to computer science to economics are working together to conceive and test solutions. Are we up to the challenge?A mathematician by training, Armstrong is a Research Fellow at the Future of Humanity Institute (FHI) at Oxford University. His research focuses on formal decision theory, the risks and possibilities of AI, the long term potential for intelligent life (and the difficulties of predicting this), and anthropic (self-locating) probability. Armstrong wrote Smarter Than Us at the request of the Machine Intelligence Research Institute, a non-profit organization studying the theoretical underpinnings of artificial superintelligence.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

AIQ: How People and Machines Are Smarter Together


Nick Polson - 2018
    AIQ explores the fascinating history of the ideas that drive this technology of the future and demystifies the core concepts behind it; the result is a positive and entertaining look at the great potential unlocked by marrying human creativity with powerful machines.” —Steven D. Levitt, bestselling co-author of Freakonomics From leading data scientists Nick Polson and James Scott, what everyone needs to know to understand how artificial intelligence is changing the world and how we can use this knowledge to make better decisions in our own lives. Dozens of times per day, we all interact with intelligent machines that are constantly learning from the wealth of data now available to them. These machines, from smart phones to talking robots to self-driving cars, are remaking the world in the 21st century in the same way that the Industrial Revolution remade the world in the 19th century. AIQ is based on a simple premise: if you want to understand the modern world, then you have to know a little bit of the mathematical language spoken by intelligent machines. AIQ will teach you that language—but in an unconventional way, anchored in stories rather than equations. You will meet a fascinating cast of historical characters who have a lot to teach you about data, probability, and better thinking. Along the way, you'll see how these same ideas are playing out in the modern age of big data and intelligent machines—and how these technologies will soon help you to overcome some of your built-in cognitive weaknesses, giving you a chance to lead a happier, healthier, more fulfilled life.

The Beginning of Infinity: Explanations That Transform the World


David Deutsch - 2011
    Taking us on a journey through every fundamental field of science, as well as the history of civilization, art, moral values, and the theory of political institutions, Deutsch tracks how we form new explanations and drop bad ones, explaining the conditions under which progress—which he argues is potentially boundless—can and cannot happen. Hugely ambitious and highly original, The Beginning of Infinity explores and establishes deep connections between the laws of nature, the human condition, knowledge, and the possibility for progress.

Exploring CQRS and Event Sourcing


Dominic Betts - 2012
    It presents a learning journey, not definitive guidance. It describes the experiences of a development team with no prior CQRS proficiency in building, deploying (to Windows Azure), and maintaining a sample real-world, complex, enterprise system to showcase various CQRS and ES concepts, challenges, and techniques.The development team did not work in isolation; we actively sought input from industry experts and from a wide group of advisors to ensure that the guidance is both detailed and practical.The CQRS pattern and event sourcing are not mere simplistic solutions to the problems associated with large-scale, distributed systems. By providing you with both a working application and written guidance, we expect you’ll be well prepared to embark on your own CQRS journey.

Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins


Garry Kasparov - 2017
    It was the dawn of a new era in artificial intelligence: a machine capable of beating the reigning human champion at this most cerebral game. That moment was more than a century in the making, and in this breakthrough book, Kasparov reveals his astonishing side of the story for the first time. He describes how it felt to strategize against an implacable, untiring opponent with the whole world watching, and recounts the history of machine intelligence through the microcosm of chess, considered by generations of scientific pioneers to be a key to unlocking the secrets of human and machine cognition. Kasparov uses his unrivaled experience to look into the future of intelligent machines and sees it bright with possibility. As many critics decry artificial intelligence as a menace, particularly to human jobs, Kasparov shows how humanity can rise to new heights with the help of our most extraordinary creations, rather than fear them. Deep Thinking is a tightly argued case for technological progress, from the man who stood at its precipice with his own career at stake.

The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies


Erik Brynjolfsson - 2014
    Digital technologies—with hardware, software, and networks at their core—will in the near future diagnose diseases more accurately than doctors can, apply enormous data sets to transform retailing, and accomplish many tasks once considered uniquely human.In The Second Machine Age MIT’s Erik Brynjolfsson and Andrew McAfee—two thinkers at the forefront of their field—reveal the forces driving the reinvention of our lives and our economy. As the full impact of digital technologies is felt, we will realize immense bounty in the form of dazzling personal technology, advanced infrastructure, and near-boundless access to the cultural items that enrich our lives.Amid this bounty will also be wrenching change. Professions of all kinds—from lawyers to truck drivers—will be forever upended. Companies will be forced to transform or die. Recent economic indicators reflect this shift: fewer people are working, and wages are falling even as productivity and profits soar.Drawing on years of research and up-to-the-minute trends, Brynjolfsson and McAfee identify the best strategies for survival and offer a new path to prosperity. These include revamping education so that it prepares people for the next economy instead of the last one, designing new collaborations that pair brute processing power with human ingenuity, and embracing policies that make sense in a radically transformed landscape.A fundamentally optimistic book, The Second Machine Age alters how we think about issues of technological, societal, and economic progress.

Artificial Intelligence


Patrick Henry Winston - 1977
    From the book, you learn why the field is important, both as a branch of engineering and as a science. If you are a computer scientist or an engineer, you will enjoy the book, because it provides a cornucopia of new ideas for representing knowledge, using knowledge, and building practical systems. If you are a psychologist, biologist, linguist, or philosopher, you will enjoy the book because it provides an exciting computational perspective on the mystery of intelligence. The Knowledge You Need This completely rewritten and updated edition of Artificial Intelligence reflects the revolutionary progress made since the previous edition was published. Part I is about representing knowledge and about reasoning methods that make use of knowledge. The material covered includes the semantic-net family of representations, describe and match, generate and test, means-ends analysis, problem reduction, basic search, optimal search, adversarial search, rule chaining, the rete algorithm, frame inheritance, topological sorting, constraint propagation, logic, truth

What to Think About Machines That Think: Today's Leading Thinkers on the Age of Machine Intelligence


John Brockman - 2015
    Today, Stephen Hawking believes that AI “could spell the end of the human race.” At the very least, its development raises complicated moral issues with powerful real-world implications—for us and for our machines.In this volume, recording artist Brian Eno proposes that we’re already part of an AI: global civilization, or what TED curator Chris Anderson elsewhere calls the hive mind. And author Pamela McCorduck considers what drives us to pursue AI in the first place.On the existential threat posed by superintelligent machines, Steven Pinker questions the likelihood of a robot uprising. Douglas Coupland traces discomfort with human-programmed AI to deeper fears about what constitutes “humanness.” Martin Rees predicts the end of organic thinking, while Daniel C. Dennett explains why he believes the Singularity might be an urban legend.Provocative, enriching, and accessible, What to Think About Machines That Think may just be a practical guide to the not-so-distant future.

Vision: A Computational Investigation into the Human Representation and Processing of Visual Information


David Marr - 1982
    A computational investigation into the human representation and processing of visual information.