Book picks similar to
Foundations of Modern Probability by Olav Kallenberg
mathematics
math
probability
statistics
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Chances Are . . .: Adventures in Probability
Michael Kaplan - 2003
All things are possible, only one thing actually happens; everything else is in the realm of probability. The twin disciplines of probability and statistics underpin every modern science and sketch the shape of all purposeful group activity- politics, economics, medicine, law, sports-giving humans a handle on the essential uncertainty of their existence. Yet while we are all aware of the hard facts, most of us still refuse to take account of probability-preferring to drive, not fly; buying into market blips; smoking cigarettes; denying we will ever age. There are some people, though-gamblers, risk buyers, forensic experts, doctors, strategists- who find probability's mass of incomplete uncertainties delightful and revelatory. "Chances Are" is their story. Combining philosophical and historical background with portraits of the men and women who command the forces of probability, this engaging, wide-ranging, and clearly written volume will be welcomed not only by the proven audiences for popular books like "E=MC2" and "The Golden Ratio" but by anyone interested in the workings of fate.
The Theoretical Minimum: What You Need to Know to Start Doing Physics
Leonard Susskind - 2013
In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
A New Kind of Science
Stephen Wolfram - 1997
Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Visual Complex Analysis
Tristan Needham - 1997
Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
University Physics with Modern Physics
Hugh D. Young - 1949
Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.
LATEX: A Document Preparation System: User's Guide and Reference Manual
Leslie Lamport - 1985
The new edition features additional styles and functions, improved font handling, and enhanced graphics capabilities. Other parts of the book have been revised to reflect user comments and suggestions. Selected sections have been rewritten to explain challenging concepts or functions, and the descriptions of both MakeIndex and BibTEX have been updated. New LATEX users will want to start with this book, and current users, particularly as they upgrade to the LATEX2e software, will be eager to obtain the most up-to-date version of its associated manual.
Features
Revised version of the authoritative user's guide and reference manual for the LATEX computer typesetting system.
Features the new standard software release - LATEX2e.
Sections rewritten to explain difficult concepts or functions.
Mathematics: Its Content, Methods and Meaning
A.D. Aleksandrov - 1963
. . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science
Conceptual Mathematics: A First Introduction to Categories
F. William Lawvere - 1997
Written by two of the best-known names in categorical logic, Conceptual Mathematics is the first book to apply categories to the most elementary mathematics. It thus serves two purposes: first, to provide a key to mathematics for the general reader or beginning student; and second, to furnish an easy introduction to categories for computer scientists, logicians, physicists, and linguists who want to gain some familiarity with the categorical method without initially committing themselves to extended study.
Probability And Statistics For Engineers And Scientists
Ronald E. Walpole - 1978
Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.