Book picks similar to
Recursive Programming Techniques by William H. Burge
functional-programming
programming
technical
cs
Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman
Dave Hoover - 2009
To grow professionally, you also need soft skills and effective learning techniques. Honing those skills is what this book is all about. Authors Dave Hoover and Adewale Oshineye have cataloged dozens of behavior patterns to help you perfect essential aspects of your craft. Compiled from years of research, many interviews, and feedback from O'Reilly's online forum, these patterns address difficult situations that programmers, administrators, and DBAs face every day. And it's not just about financial success. Apprenticeship Patterns also approaches software development as a means to personal fulfillment. Discover how this book can help you make the best of both your life and your career. Solutions to some common obstacles that this book explores in-depth include:Burned out at work? "Nurture Your Passion" by finding a pet project to rediscover the joy of problem solving.Feeling overwhelmed by new information? Re-explore familiar territory by building something you've built before, then use "Retreat into Competence" to move forward again.Stuck in your learning? Seek a team of experienced and talented developers with whom you can "Be the Worst" for a while. "Brilliant stuff! Reading this book was like being in a time machine that pulled me back to those key learning moments in my career as a professional software developer and, instead of having to learn best practices the hard way, I had a guru sitting on my shoulder guiding me every step towards master craftsmanship. I'll certainly be recommending this book to clients. I wish I had this book 14 years ago!" -Russ Miles, CEO, OpenCredo
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
An Introduction to Genetic Algorithms
Melanie Mitchell - 1996
This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Building Mobile Apps at Scale: 39 Engineering Challenges
Gergely Orosz - 2021
By scale, we mean having numbers of users in the millions and being built by large engineering teams.For mobile engineers, this book is a blueprint for modern app engineering approaches. For non-mobile engineers and managers, it is a resource with which to build empathy and appreciation for the complexity of world-class mobile engineering.
Category Theory for Programmers
Bartosz Milewski - 2014
Collected from the series of blog posts starting at: https://bartoszmilewski.com/2014/10/2...Hardcover available at: http://www.blurb.com/b/9008339-catego...
Growing Object-Oriented Software, Guided by Tests
Steve Freeman - 2009
This one's a keeper." --Robert C. Martin "If you want to be an expert in the state of the art in TDD, you need to understand the ideas in this book."--Michael Feathers Test-Driven Development (TDD) is now an established technique for delivering better software faster. TDD is based on a simple idea: Write tests for your code before you write the code itself. However, this simple idea takes skill and judgment to do well. Now there's a practical guide to TDD that takes you beyond the basic concepts. Drawing on a decade of experience building real-world systems, two TDD pioneers show how to let tests guide your development and "grow" software that is coherent, reliable, and maintainable. Steve Freeman and Nat Pryce describe the processes they use, the design principles they strive to achieve, and some of the tools that help them get the job done. Through an extended worked example, you'll learn how TDD works at multiple levels, using tests to drive the features and the object-oriented structure of the code, and using Mock Objects to discover and then describe relationships between objects. Along the way, the book systematically addresses challenges that development teams encounter with TDD--from integrating TDD into your processes to testing your most difficult features. Coverage includes - Implementing TDD effectively: getting started, and maintaining your momentum throughout the project - Creating cleaner, more expressive, more sustainable code - Using tests to stay relentlessly focused on sustaining quality - Understanding how TDD, Mock Objects, and Object-Oriented Design come together in the context of a real software development project - Using Mock Objects to guide object-oriented designs - Succeeding where TDD is difficult: managing complex test data, and testing persistence and concurrency
Combinatorial Optimization: Algorithms and Complexity
Christos H. Papadimitriou - 1998
All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.
Making Games with Python & Pygame
Al Sweigart - 2012
Each chapter gives you the complete source code for a new game and teaches the programming concepts from these examples. The book is available under a Creative Commons license and can be downloaded in full for free from http: //inventwithpython.com/pygame This book was written to be understandable by kids as young as 10 to 12 years old, although it is great for anyone of any age who has some familiarity with Python.
The Design and Evolution of C++
Bjarne Stroustrup - 1994
As the inventor of the language, Stroustrup presents his insight into the decisions which resulted in the features of C++ - the praised, the controversial and even some of the rejected ones. By writing this book the author presents his object-oriented programming philosophy to the interested programming community. His vehicle is the C++ language but his focus is on real object-oriented programming language development for the working programmer rather than as a abstract approach to the OOP paradigm.
97 Things Every Programmer Should Know: Collective Wisdom from the Experts
Kevlin Henney - 2010
With the 97 short and extremely useful tips for programmers in this book, you'll expand your skills by adopting new approaches to old problems, learning appropriate best practices, and honing your craft through sound advice.With contributions from some of the most experienced and respected practitioners in the industry--including Michael Feathers, Pete Goodliffe, Diomidis Spinellis, Cay Horstmann, Verity Stob, and many more--this book contains practical knowledge and principles that you can apply to all kinds of projects.A few of the 97 things you should know:"Code in the Language of the Domain" by Dan North"Write Tests for People" by Gerard Meszaros"Convenience Is Not an -ility" by Gregor Hohpe"Know Your IDE" by Heinz Kabutz"A Message to the Future" by Linda Rising"The Boy Scout Rule" by Robert C. Martin (Uncle Bob)"Beware the Share" by Udi Dahan
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Operating System Concepts
Abraham Silberschatz - 1985
By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.
The Tangled Web: A Guide to Securing Modern Web Applications
Michal Zalewski - 2011
Every piece of the web application stack, from HTTP requests to browser-side scripts, comes with important yet subtle security consequences. To keep users safe, it is essential for developers to confidently navigate this landscape.In The Tangled Web, Michal Zalewski, one of the world's top browser security experts, offers a compelling narrative that explains exactly how browsers work and why they're fundamentally insecure. Rather than dispense simplistic advice on vulnerabilities, Zalewski examines the entire browser security model, revealing weak points and providing crucial information for shoring up web application security. You'll learn how to:Perform common but surprisingly complex tasks such as URL parsing and HTML sanitization Use modern security features like Strict Transport Security, Content Security Policy, and Cross-Origin Resource Sharing Leverage many variants of the same-origin policy to safely compartmentalize complex web applications and protect user credentials in case of XSS bugs Build mashups and embed gadgets without getting stung by the tricky frame navigation policy Embed or host user-supplied content without running into the trap of content sniffing For quick reference, "Security Engineering Cheat Sheets" at the end of each chapter offer ready solutions to problems you're most likely to encounter. With coverage extending as far as planned HTML5 features, The Tangled Web will help you create secure web applications that stand the test of time.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Software Testing
Ron Patton - 2000
Everyone has heard of computer programmers but few people realize there are nearly as many people behind the scenes with job titles such as Software Tester, Software Quality Assurance Engineer, Software Test Engineer, and Software Test Technician. Microsoft alone hires hundreds of people for these positions each year. There are also many companies whose sole purpose is providing software test consulting and software testing services. The first edition of Software Testing was published in November 2000. Although the processes and techniques used in testing computer software are timeless, this title will be brought up-to-date by adding a chapter that specifically deals with testing software for security bugs and revisiting the rest of the book to update examples and references.