Book picks similar to
A Physicist's Guide to Mathematica by Patrick T. Tam
textbooks
programming-general
computer-science
cs
Data Structures (SIE)
Seymour Lipschutz - 1986
The classic and popular text is back with refreshed pedagogy and programming problems helps the students to have an upper hand on the practical understanding of the subject. Salient Features: Expanded discussion on Recursion (Backtracking, Simulating Recursion), Spanning Trees. Covers all important topics like Strings, Arrays, Linked Lists, Trees Highly illustrative with over 300 figures and 400 solved and unsolved exercises Content 1.Introduction and Overview 2.Preliminaries 3.String Processing 4.Arrays, Records and Pointers 5.Linked Lists 6.S tacks, Queues, Recursion 7.Trees 8.Graphs and Their Applications 9.Sorting and Searching About the Author: Seymour Lipschutz Seymour Lipschutz, Professor of Mathematics, Temple University
Feynman Lectures On Computation
Richard P. Feynman - 1996
Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.
Statistics Done Wrong: The Woefully Complete Guide
Alex Reinhart - 2013
Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.
Gödel's Proof
Ernest Nagel - 1958
Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
How to read and do proofs
Daniel Solow - 1982
Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.
Machine Learning: An Algorithmic Perspective
Stephen Marsland - 2009
The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Robbins and Cotran Review of Pathology
Edward C. Klatt - 2000
More than 1,000 questions cover everything from the fundamentals of gross and microscopic pathology to the latest findings in molecular biology and genetics. Based on two of the best-selling, most authoritative pathology textbooks-Robbins and Cotran Pathologic Basis of Disease, 7th Edition and Basic Pathology, 7th Edition-Robbins and Cotran Review of Pathology, 2nd Edition is an ideal aid for coursework, self-assessment, and examinations in pathology.Offers more than 1,000 questions that follow the clinical vignette style, emphasizing problem solving over rote memorization. Presented in both single-best-answer and extended-matching formats, they reflect levels of difficulty that prepare students for both examinations and the practice of medicine.Provides an answer and a detailed explanation for every question at the end of each chapter.Includes page references and a parallel organization to both Robbins and Cotran Pathologic Basis of Disease and Basic Pathology, making additional information easy to locate.Presents correlative laboratory, radiologic, and physical diagnostic data to enhance readers' understanding of pathophysiology and to integrate pathology with other medical disciplines.Uses numerous full-color illustrations to test readers' diagnostic skills.Delivers a 73-question chapter covering all subjects that mimics a comprehensive final examination.
Computational Complexity
Sanjeev Arora - 2007
Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.
Starting Out with Java: From Control Structures Through Objects
Tony Gaddis - 2009
If you wouldlike to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0132989999/ISBN-13: 9780132989992. That packageincludes ISBN-10: 0132855836/ISBN-13: 9780132855839 and ISBN-10: 0132891557/ISBN-13: 9780132891554. MyProgrammingLab should only be purchased when required by an instructor. In "Starting Out with Java: From Control Structures through Objects", Gaddis covers procedural programming control structures and methods before introducing object-oriented programming. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, and an abundance of exercises appear in every chapter. "
Semiconductor Optoelectronic Devices
Pallab Bhattacharya - 1993
KEY TOPICS: Coverage begins with an optional review of key concepts--such as properties of compound semiconductor, quantum mechanics, semiconductor statistics, carrier transport properties, optical processes, and junction theory--then progress gradually through more advanced topics. The Second Edition has been both updated and expanded to include the recent developments in the field.
MAKE: Electronics: Learning Through Discovery
Charles Platt - 2008
I also love the sense of humor. It's very good at disarming the fear. And it's gorgeous. I'll be recommending this book highly." --Tom Igoe, author of Physical Computing and Making Things TalkWant to learn the fundamentals of electronics in a fun, hands-on way? With Make: Electronics, you'll start working on real projects as soon as you crack open the book. Explore all of the key components and essential principles through a series of fascinating experiments. You'll build the circuits first, then learn the theory behind them!Build working devices, from simple to complex You'll start with the basics and then move on to more complicated projects. Go from switching circuits to integrated circuits, and from simple alarms to programmable microcontrollers. Step-by-step instructions and more than 500 full-color photographs and illustrations will help you use -- and understand -- electronics concepts and techniques.Discover by breaking things: experiment with components and learn from failureSet up a tricked-out project space: make a work area at home, equipped with the tools and parts you'll needLearn about key electronic components and their functions within a circuitCreate an intrusion alarm, holiday lights, wearable electronic jewelry, audio processors, a reflex tester, and a combination lockBuild an autonomous robot cart that can sense its environment and avoid obstaclesGet clear, easy-to-understand explanations of what you're doing and why
The Scheme Programming Language
R. Kent Dybvig - 1987
Many exercises are presented to help reinforce the lessons learned, and answers to the exercises are given in a new appendix.Most of the remaining chapters are dedicated to the reference material, which describes in detail the standard features of Scheme included in the Revised$^5$ Report on Scheme and the ANSI/IEEE standard for Scheme.Numerous examples are presented throughout the introductory and reference portions of the text, and a unique set of extended example programs and applications, with additional exercises, are presented in the final chapter. Reinforcing the book's utility as a reference text are appendices that present the formal syntax of Scheme, a summary of standard forms and procedures, and a bibliography of Scheme resources.The Scheme Programming Language stands alone as an introduction to and essential reference for Scheme programmers. it is also useful as a supplementary text for any course that uses Scheme.The Scheme Programming Language is illustrated by artist Jean-Pierre Hébert, who writes Scheme programs to extend his ability to create sophisticated works of digital art.R. Kent Dybvig is Professor of Computer Science at Indiana University and principal developer of Chez Scheme.
Microelectronics
Jacob Millman - 1979
With pedagogical use of second color, it covers devices in one place so that circuit characteristics are developed early.