Book picks similar to
Operating Systems: A Modern Introduction by Theodor Richardson
operating-systems
os
programing
algorithms
Programming in Scala
Martin Odersky - 2008
Coauthored by the designer of the Scala language, this authoritative book will teach you, one step at a time, the Scala language and the ideas behind it. The book is carefully crafted to help you learn. The first few chapters will give you enough of the basics that you can already start using Scala for simple tasks. The entire book is organized so that each new concept builds on concepts that came before - a series of steps that promises to help you master the Scala language and the important ideas about programming that Scala embodies. A comprehensive tutorial and reference for Scala, this book covers the entire language and important libraries.
The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation
Gary William Flake - 1998
Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation.Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.
Building Secure and Reliable Systems: Best Practices for Designing, Implementing, and Maintaining Systems
Heather Adkins - 2020
In this book, experts from Google share best practices to help your organization design scalable and reliable systems that are fundamentally secure.Two previous O'Reilly books from Google--Site Reliability Engineering and The Site Reliability Workbook--demonstrated how and why a commitment to the entire service lifecycle enables organizations to successfully build, deploy, monitor, and maintain software systems. In this latest guide, the authors offer insights into system design, implementation, and maintenance from practitioners who specialize in security and reliability. They also discuss how building and adopting their recommended best practices requires a culture that is supportive of such change.You'll learn about secure and reliable systems through:Design strategiesRecommendations for coding, testing, and debugging practicesStrategies to prepare for, respond to, and recover from incidentsCultural best practices that help teams across your organization collaborate effectively
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Ctrl+Shift+Enter Mastering Excel Array Formulas: Do the Impossible with Excel Formulas Thanks to Array Formula Magic
Mike Girvin - 2013
Beginning with an introduction to array formulas, this manual examines topics such as how they differ from ordinary formulas, the benefits and drawbacks of their use, functions that can and cannot handle array calculations, and array constants and functions. Among the practical applications surveyed include how to extract data from tables and unique lists, how to get results that match any criteria, and how to utilize various methods for unique counts. This book contains 529 screen shots.
Head First Software Development
Dan Pilone - 2007
Instead of surrendering to these common problems, let Head First Software Development guide you through the best practices of software development. Before you know it, those failed projects will be a thing of the past. With its unique visually rich format, this book pulls together the hard lessons learned by expert software developers over the years. You'll gain essential information about each step of the software development lifecycle -- requirements, design, coding, testing, implementing, and maintenance -- and understand why and how different development processes work. This book is for you if you are:Tired of your customers assuming you're psychic. You'll learn not only how to get good requirements, but how to make sure you're always building the software that customers want (even when they're not sure themselves) Wondering when the other 15 programmers you need to get your project done on time are going to show up. You'll learn how some very simple scheduling and prioritizing will revolutionize your success rate in developing software. Confused about being rational, agile, or a tester. You'll learn not only about the various development methodologies out there, but how to choose a solution that's right for your project. Confused because the way you ran your last project worked so well, but failed miserably this time around. You'll learn how to tackle each project individually, combine lessons you've learned on previous projects with cutting-edge development techniques, and end up with great software on every project.Head First Software Development is here to help you learn in a way that your brain likes... and you'll have a blast along the way. Why pick up hundreds of boring books on the philosophy of this approach or the formal techniques required for that one? Stick with Head First Software Development, and your projects will succeed like never before. Go on, get started... you'll learn and have fun. We promise.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Head First C
David Griffiths - 2011
With a unique method that goes beyond syntax and how-to manuals, this guide not only teaches you the language, it helps you understand how to be a great programmer. You'll learn key areas such as language basics, pointers and pointer arithmetic, and dynamic memory management. Advanced topics include multi-threading and network programming—topics typically covered on a college-level course.This book also features labs: in-depth projects intended to stretch your abilities, test your new skills, and build confidence. Head First C mimics the style of college-level C courses, making it ideal as an accessible textbook for students.We think your time is too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First C uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
An Introduction to Genetic Algorithms
Melanie Mitchell - 1996
This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Linux Pocket Guide
Daniel J. Barrett - 2004
Every page of Linux Pocket Guide lives up to this billing. It clearly explains how to get up to speed quickly on day-to-day Linux use. Once you're up and running, Linux Pocket Guide provides an easy-to-use reference that you can keep by your keyboard for those times when you want a fast, useful answer, not hours in the man pages.Linux Pocket Guide is organized the way you use Linux: by function, not just alphabetically. It's not the 'bible of Linux; it's a practical and concise guide to the options and commands you need most. It starts with general concepts like files and directories, the shell, and X windows, and then presents detailed overviews of the most essential commands, with clear examples. You'll learn each command's purpose, usage, options, location on disk, and even the RPM package that installed it.The Linux Pocket Guide is tailored to Fedora Linux--the latest spin-off of Red Hat Linux--but most of the information applies to any Linux system.Throw in a host of valuable power user tips and a friendly and accessible style, and you'll quickly find this practical, to-the-point book a small but mighty resource for Linux users.
Running Linux
Matthias Kalle Dalheimer - 2005
Matt Welsh wrote the original Linux Installation and Getting Started guide; Matthias Dalheimer now leads the KDE Foundation. Their knowledge shows, whether they re talking about system administration, multimedia, or programming. You ll start by getting comfortable and productive: navigating command lines and GUIs; using browsers and office software; even gaming. Then, the authors lead you into the heart of Linux. You ll build kernels, process text, manage startup, troubleshoot X Window video. You ll implement print, file, network, and Internet services. There s even a full chapter on building LAMP application environments. Along the way, the authors introduce a raft of new topics, from encrypted email to groupware -- all with the clarity and accuracy you need to get results. Bill Camarda, from the February 2006 href="http://www.barnesandnoble.com/newslet... Only
Cryptography Engineering: Design Principles and Practical Applications
Niels Ferguson - 2010
Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Microservice Patterns
Chris Richardson - 2017
However, successful applications have a habit of growing. Eventually the development team ends up in what is known as monolithic hell. All aspects of software development and deployment become painfully slow. The solution is to adopt the microservice architecture, which structures an application as a services, organized around business capabilities. This architecture accelerates software development and enables continuous delivery and deployment of complex software applications.Microservice Patterns teaches enterprise developers and architects how to build applications with the microservice architecture. Rather than simply advocating for the use the microservice architecture, this clearly-written guide takes a balanced, pragmatic approach. You'll discover that the microservice architecture is not a silver bullet and has both benefits and drawbacks. Along the way, you'll learn a pattern language that will enable you to solve the issues that arise when using the microservice architecture. This book also teaches you how to refactor a monolithic application to a microservice architecture.
Head First Python
Paul Barry - 2010
You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you.We think your time is too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Python uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.