An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Clojure Applied: From Practice to Practitioner


Ben Vandgrift - 2015
    You want to develop software in the most effective, efficient way possible. This book gives you the answers you’ve been looking for in friendly, clear language.We’ll cover, in depth, the core concepts of Clojure: immutable collections, concurrency, pure functions, and state management. You’ll finally get the complete picture you’ve been looking for, rather than dozens of puzzle pieces you must assemble yourself. First, we focus on Clojure thinking. You’ll discover the simple architecture of Clojure software, effective development processes, and how to structure applications. Next, we explore the core concepts of Clojure development. You’ll learn how to model with immutable data; write simple, pure functions for efficient transformation; build clean, concurrent designs; and structure your code for elegant composition. Finally, we move beyond pure application development and into the real world. You’ll understand your application’s configuration and dependencies, connect with other data sources, and get your libraries and applications out the door.Go beyond the toy box and into Clojure’s way of thinking. By the end of this book, you’ll have the tools and information to put Clojure’s strengths to work.https://pragprog.com/book/vmclojeco/c...

Make Your Own Neural Network: An In-depth Visual Introduction For Beginners


Michael Taylor - 2017
    A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.

Engines of Creation: The Coming Era of Nanotechnology


K. Eric Drexler - 1986
    This brilliant work heralds the new age of nanotechnology, which will give us thorough and inexpensive control of the structure of matter.  Drexler examines the enormous implications of these developments for medicine, the economy, and the environment, and makes astounding yet well-founded projections for the future.

Taming Text: How to Find, Organize, and Manipulate It


Grant S. Ingersoll - 2011
    This causes real problems for everyday users who need to make sense of all the information available, and for software engineers who want to make their text-based applications more useful and user-friendly. Whether building a search engine for a corporate website, automatically organizing email, or extracting important nuggets of information from the news, dealing with unstructured text can be daunting.Taming Text is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. It explores how to automatically organize text, using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. This book gives examples illustrating each of these topics, as well as the foundations upon which they are built.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

iPhone Programming (Big Nerd Ranch Guides)


Joe Conway - 2010
    In each chapter, you will learn programming concepts and apply them immediately as you build an application or enhance one from a previous chapter. These applications have been carefully designed and tested to teach the associated concepts and to provide practice working with the standard development tools Xcode, Interface Builder, and Instruments. The guide’s learn-while-doing approach delivers the practical knowledge and experience you need to design and build real-world applications.

Effective Python: 90 Specific Ways to Write Better Python (Effective Software Development Series)


Brett Slatkin - 2019
    However, Python’s unique strengths, charms, and expressiveness can be hard to grasp, and there are hidden pitfalls that can easily trip you up. This second edition of Effective Python will help you master a truly “Pythonic” approach to programming, harnessing Python’s full power to write exceptionally robust and well-performing code. Using the concise, scenario-driven style pioneered in Scott Meyers’ best-selling Effective C++, Brett Slatkin brings together 90 Python best practices, tips, and shortcuts, and explains them with realistic code examples so that you can embrace Python with confidence. Drawing on years of experience building Python infrastructure at Google, Slatkin uncovers little-known quirks and idioms that powerfully impact code behavior and performance. You’ll understand the best way to accomplish key tasks so you can write code that’s easier to understand, maintain, and improve. In addition to even more advice, this new edition substantially revises all items from the first edition to reflect how best practices have evolved. Key features include 30 new actionable guidelines for all major areas of Python Detailed explanations and examples of statements, expressions, and built-in types Best practices for writing functions that clarify intention, promote reuse, and avoid bugs Better techniques and idioms for using comprehensions and generator functions Coverage of how to accurately express behaviors with classes and interfaces Guidance on how to avoid pitfalls with metaclasses and dynamic attributes More efficient and clear approaches to concurrency and parallelism Solutions for optimizing and hardening to maximize performance and quality Techniques and built-in modules that aid in debugging and testing Tools and best practices for collaborative development   Effective Python will prepare growing programmers to make a big impact using Python.

Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms


Nikhil Buduma - 2015
    

Basic Category Theory for Computer Scientists


Benjamin C. Pierce - 1991
    Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts.

Gray Hat Python: Python Programming for Hackers and Reverse Engineers


Justin Seitz - 2008
    But until now, there has been no real manual on how to use Python for a variety of hacking tasks. You had to dig through forum posts and man pages, endlessly tweaking your own code to get everything working. Not anymore.Gray Hat Python explains the concepts behind hacking tools and techniques like debuggers, trojans, fuzzers, and emulators. But author Justin Seitz goes beyond theory, showing you how to harness existing Python-based security tools - and how to build your own when the pre-built ones won't cut it.You'll learn how to:Automate tedious reversing and security tasks Design and program your own debugger Learn how to fuzz Windows drivers and create powerful fuzzers from scratch Have fun with code and library injection, soft and hard hooking techniques, and other software trickery Sniff secure traffic out of an encrypted web browser session Use PyDBG, Immunity Debugger, Sulley, IDAPython, PyEMU, and more The world's best hackers are using Python to do their handiwork. Shouldn't you?

Neural Networks for Pattern Recognition


Christopher M. Bishop - 1996
    After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

Advanced Analytics with Spark


Sandy Ryza - 2015
    

SSH, The Secure Shell: The Definitive Guide


Daniel J. Barrett - 2001
    It supports secure remote logins, secure file transfer between computers, and a unique "tunneling" capability that adds encryption to otherwise insecure network applications. Best of all, SSH is free, with feature-filled commercial versions available as well.SSH: The Secure Shell: The Definitive Guide covers the Secure Shell in detail for both system administrators and end users. It demystifies the SSH man pages and includes thorough coverage of:SSH1, SSH2, OpenSSH, and F-Secure SSH for Unix, plus Windows and Macintosh products: the basics, the internals, and complex applications.Configuring SSH servers and clients, both system-wide and per user, with recommended settings to maximize security.Advanced key management using agents, agent forwarding, and forced commands.Forwarding (tunneling) of TCP and X11 applications in depth, even in the presence of firewalls and network address translation (NAT).Undocumented behaviors of popular SSH implementations.Installing and maintaining SSH systems.Whether you're communicating on a small LAN or across the Internet, SSH can ship your data from "here" to "there" efficiently and securely. So throw away those insecure .rhosts and hosts.equiv files, move up to SSH, and make your network a safe place to live and work.

Producing Open Source Software: How to Run a Successful Free Software Project


Karl Fogel - 2005
    Each is the result of a publicly collaborative process among numerous developers who volunteer their time and energy to create better software.The truth is, however, that the overwhelming majority of free software projects fail. To help you beat the odds, O'Reilly has put together Producing Open Source Software, a guide that recommends tried and true steps to help free software developers work together toward a common goal. Not just for developers who are considering starting their own free software project, this book will also help those who want to participate in the process at any level.The book tackles this very complex topic by distilling it down into easily understandable parts. Starting with the basics of project management, it details specific tools used in free software projects, including version control, IRC, bug tracking, and Wikis. Author Karl Fogel, known for his work on CVS and Subversion, offers practical advice on how to set up and use a range of tools in combination with open mailing lists and archives. He also provides several chapters on the essentials of recruiting and motivating developers, as well as how to gain much-needed publicity for your project.While managing a team of enthusiastic developers -- most of whom you've never even met -- can be challenging, it can also be fun. Producing Open Source Software takes this into account, too, as it speaks of the sheer pleasure to be had from working with a motivated team of free software developers.