Book picks similar to
Machine Learning 机器学习 by Zhou Zhihua 周志华
stem
textbooks
0_pdf
acquired
Windows 10 for Seniors for Dummies
Peter Weverka - 2015
Written by an all-around tech guru and the coauthor of Windows 8.1 For Seniors For Dummies, it cuts through confusing jargon and covers just what you need to know: navigating the interface with a mouse or a touchscreen, customizing the desktop, managing printers and other external devices, setting up and connecting to simple networks, and storing files in the Cloud. Plus, you'll find helpful instructions on sending and receiving email, uploading, editing, and downloading pictures, listening to music, playing games, and so much more.Whether you're upgrading to the new Windows 10 operating system with the hopes of keeping in touch with loved ones via webcam or instant messenger, viewing videos, or simply making your life more organized and streamlined, all the guidance you need to make the most of Windows 10 is at your fingertips.Customize the desktop and set up a simple network Connect with family and friends online Work with apps like a pro Safely protect your data, your computer, and your identity With large-print format for text, figures, and drawings, there's no easier way to get up and running on the new Windows operating system than with Windows 10 For Seniors For Dummies.
Computer Networking: A Top-Down Approach
James F. Kurose - 2000
Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.
Engineering Software as a Service: An Agile Approach Using Cloud Computing + $10 AWS Credit
Armando Fox - 2013
This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details.
CCENT/CCNA ICND1 100-105 Official Cert Guide
Wendell Odom - 2016
They are built with the objective of providing assessment, review, and practice to help ensure you are fully prepared for your certification exam. Master Cisco CCENT/CCNA ICND1 100-105 exam topics Assess your knowledge with chapter-opening quizzes Review key concepts with exam preparation tasks This is the eBook edition of the CCENT/CCNA ICND1 100-105 Official Cert Guide. This eBook does not include the companion CD-ROM with practice exam that comes with the print edition. CCENT/CCNA ICND1 100-105 Official Cert Guide presents you with an organized test-preparation routine through the use of proven series elements and techniques. “Do I Know This Already?” quizzes open each chapter and enable you to decide how much time you need to spend on each section. Exam topic lists make referencing easy. Chapter-ending Exam Preparation Tasks help you drill on key concepts you must know thoroughly. CCENT/CCNA ICND1 100-105 Official Cert Guide from Cisco Press enables you to succeed on the exam the first time and is the only self-study resource approved by Cisco. Best-selling author and expert instructor Wendell Odom shares preparation hints and test-taking tips, helping you identify areas of weakness and improve both your conceptual knowledge and hands-on skills. This complete study package includes · A test-preparation routine proven to help you pass the exams · Do I Know This Already? quizzes, which enable you to decide how much time you need to spend on each section · Chapter-ending and part-ending exercises, which help you drill on key concepts you must know thoroughly · Troubleshooting sections, which help you master the complex scenarios you will face on the exam · A free copy of the CCENT ICND1 100-105 Network Simulator Lite software, complete with meaningful lab exercises that help you hone your hands-on skills with the command-line interface for routers and switches · Links to a series of hands-on config labs developed by the author · Online, interactive practice exercises that help you hone your knowledge · More than 90 minutes of video mentoring from the author · A final preparation chapter, which guides you through tools and resources to help you craft your review and test-taking strategies · Study plan suggestions and templates to help you organize and optimize your study time Well regarded for its level of detail, study plans, assessment features, challenging review questions and exercises, video instruction, and hands-on labs, this official study guide helps you master the concepts and techniques that ensure your exam success. This official study guide helps you master all the topics on the CCENT/CCNA ICND1 exam, including · Networking fundamentals · Implementing basic Ethernet LANs · Ethernet LANs: design, VLANs, and troubleshooting · IPv4 addressing and subnetting · Implementing IPv4 · IPv4 design and troubleshooting ...
The Hundred-Page Machine Learning Book
Andriy Burkov - 2019
During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.
Operating System Concepts
Abraham Silberschatz - 1985
By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.
A New Kind of Science
Stephen Wolfram - 1997
Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton
Gray Hat Hacking: The Ethical Hacker's Handbook
Shon Harris - 2004
Section I: Exploits 202; Chapter 1: Survival; Chapter 2: Basic Exploits; Chapter 3: Advance Exploits; Chapter 4: Writing Shell Code; Section II: Vulnerability Analysis; Chapter 5: Passive Analysis; Chapter 6: Active Analysis; Chapter 7: Bug to Exploit; Chapter 8: Mitigation; Section III: Advanced System Hacks; Chapter 9: Advanced.
Make Your Own Neural Network: An In-depth Visual Introduction For Beginners
Michael Taylor - 2017
A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Digital Fundamentals
Thomas L. Floyd - 1986
Floyd's acclaimed emphasis on "applications using real devices" and on "troubleshooting" gives users the problem-solving experience they'll need in their professional careers. Known for its clear, accurate explanations of theory supported by superior exercises and examples, this book's full-color format is packed with the visual aids today's learners need to grasp often complex concepts. KEY TOPICS The book features a comprehensive review of fundamental topics and a unique introduction to two popular programmable logic software packages (Altera and Xilinx) and boundary scan software. For electronic technicians, system designers, engineers.
Make Your Own Neural Network
Tariq Rashid - 2016
Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation
Gary William Flake - 1998
Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation.Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors