Book picks similar to
Introduction to Computer Theory by Daniel I.A. Cohen
computer-science
programming
computing
compsci
The IDA Pro Book: The Unofficial Guide to the World's Most Popular Disassembler
Chris Eagle - 2008
With IDA Pro, you live in a source code-optional world. IDA can automatically analyze the millions of opcodes that make up an executable and present you with a disassembly. But at that point, your work is just beginning. With The IDA Pro Book, you'll learn how to turn that mountain of mnemonics into something you can actually use.Hailed by the creator of IDA Pro as the "long-awaited" and "information-packed" guide to IDA, The IDA Pro Book covers everything from the very first steps to advanced automation techniques. While other disassemblers slow your analysis with inflexibility, IDA invites you to customize its output for improved readability and usefulness. You'll save time and effort as you learn to:Identify known library routines, so you can focus your analysis on other areas of the code Extend IDA to support new processors and filetypes, making disassembly possible for new or obscure architectures Explore popular plug-ins that make writing IDA scripts easier, allow collaborative reverse engineering, and much more Utilize IDA's built-in debugger to tackle obfuscated code that would defeat a stand-alone disassembler You'll still need serious assembly skills to tackle the toughest executables, but IDA makes things a lot easier. Whether you're analyzing the software on a black box or conducting hard-core vulnerability research, a mastery of IDA Pro is crucial to your success. Take your skills to the next level with The IDA Pro Book.
Write Great Code: Volume 1: Understanding the Machine
Randall Hyde - 2004
A dirty little secret assembly language programmers rarely admit to, however, is that what you really need to learn is machine organization, not assembly language programming. Write Great Code Vol I, the first in a series from assembly language expert Randall Hyde, dives right into machine organization without the extra overhead of learning assembly language programming at the same time. And since Write Great Code Vol I concentrates on the machine organization, not assembly language, the reader will learn in greater depth those subjects that are language-independent and of concern to a high level language programmer. Write Great Code Vol I will help programmers make wiser choices with respect to programming statements and data types when writing software, no matter which language they use.
HTML5: The Missing Manual
Matthew MacDonald - 2011
Until now, all it's been missing is a manual. With this thorough, jargon-free guide, you'll learn how to build web apps that include video tools, dynamic drawings, geolocation, offline web apps, drag-and-drop, and many other features. HTML5 is the future of the Web, and with this book you'll reach it quickly.The important stuff you need to know:Structure web pages in a new way. Learn how HTML5 helps make web design tools and search engines work smarter.Add audio and video without plugins. Build playback pages that work in every browser.Draw with Canvas. Create shapes, pictures, text, and animation—and make them interactive.Go a long way with style. Use CSS3 and HTML5 to jazz up your pages and adapt them for mobile devices.Build web apps with rich desktop features. Let users work with your app offline, and process user-selected files in the browser.Create location-aware apps. Write geolocation applications directly in the browser.
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
Django for Beginners: Learn web development with Django 2.0
William S. Vincent - 2018
Proceed step-by-step through five progressively more complex web applications: from a "Hello World" app all the way to a robust Newspaper app with a custom user model, complete user authentication flow, foreign key relationships, and more. Learn current best practices around class-based views, templates, urls, user authentication, testing, and deployment. The material is up-to-date with the latest versions of both Django (2.0) and Python (3.6). TABLE OF CONTENTS: * Introduction * Chapter 1: Initial Setup * Chapter 2: Hello World app * Chapter 3: Pages app * Chapter 4: Message Board app * Chapter 5: Blog app * Chapter 6: Forms * Chapter 7: User Accounts * Chapter 8: Custom User Model * Chapter 9: User Authentication * Chapter 10: Bootstrap * Chapter 11: Password Change and Reset * Chapter 12: Email * Chapter 13: Newspaper app * Chapter 14: Permissions and Authorizations * Chapter 15: Comments * Conclusion
The Node Beginner Book
Manuel Kiessling - 2011
The aim of The Node Beginner Book is to get you started with developing applications for Node.js, teaching you everything you need to know about advanced JavaScript along the way on 59 pages.
Linux Pocket Guide
Daniel J. Barrett - 2004
Every page of Linux Pocket Guide lives up to this billing. It clearly explains how to get up to speed quickly on day-to-day Linux use. Once you're up and running, Linux Pocket Guide provides an easy-to-use reference that you can keep by your keyboard for those times when you want a fast, useful answer, not hours in the man pages.Linux Pocket Guide is organized the way you use Linux: by function, not just alphabetically. It's not the 'bible of Linux; it's a practical and concise guide to the options and commands you need most. It starts with general concepts like files and directories, the shell, and X windows, and then presents detailed overviews of the most essential commands, with clear examples. You'll learn each command's purpose, usage, options, location on disk, and even the RPM package that installed it.The Linux Pocket Guide is tailored to Fedora Linux--the latest spin-off of Red Hat Linux--but most of the information applies to any Linux system.Throw in a host of valuable power user tips and a friendly and accessible style, and you'll quickly find this practical, to-the-point book a small but mighty resource for Linux users.
Effective Python: 90 Specific Ways to Write Better Python (Effective Software Development Series)
Brett Slatkin - 2019
However, Python’s unique strengths, charms, and expressiveness can be hard to grasp, and there are hidden pitfalls that can easily trip you up. This second edition of Effective Python will help you master a truly “Pythonic” approach to programming, harnessing Python’s full power to write exceptionally robust and well-performing code. Using the concise, scenario-driven style pioneered in Scott Meyers’ best-selling Effective C++, Brett Slatkin brings together 90 Python best practices, tips, and shortcuts, and explains them with realistic code examples so that you can embrace Python with confidence. Drawing on years of experience building Python infrastructure at Google, Slatkin uncovers little-known quirks and idioms that powerfully impact code behavior and performance. You’ll understand the best way to accomplish key tasks so you can write code that’s easier to understand, maintain, and improve. In addition to even more advice, this new edition substantially revises all items from the first edition to reflect how best practices have evolved. Key features include 30 new actionable guidelines for all major areas of Python Detailed explanations and examples of statements, expressions, and built-in types Best practices for writing functions that clarify intention, promote reuse, and avoid bugs Better techniques and idioms for using comprehensions and generator functions Coverage of how to accurately express behaviors with classes and interfaces Guidance on how to avoid pitfalls with metaclasses and dynamic attributes More efficient and clear approaches to concurrency and parallelism Solutions for optimizing and hardening to maximize performance and quality Techniques and built-in modules that aid in debugging and testing Tools and best practices for collaborative development Effective Python will prepare growing programmers to make a big impact using Python.
Engineering a Compiler
Keith D. Cooper - 2003
No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.
Python Essential Reference (Developer's Library)
David Beazley - 1999
This text concisely describes the Python language and its programming environment for those readers already familiar with languages such as C and C++.
Thinking in C++
Bruce Eckel - 1995
It shows readers how to step back from coding to consider design strategies and attempt to get into the head of the designer.
The Elements of User Experience: User-Centered Design for the Web
Jesse James Garrett - 2002
This book aims to minimize the complexity of user-centered design for the Web with explanations and illustrations that focus on ideas rather than tools or techniques.
An Introduction to APIs
Brian Cooksey - 2016
We start off easy, defining some of the tech lingo you may have heard before, but didn’t fully understand. From there, each lesson introduces something new, slowly building up to the point where you are confident about what an API is and, for the brave, could actually take a stab at using one.
Make Your Own Neural Network
Tariq Rashid - 2016
Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.