Book picks similar to
Reinforcement Learning by Richard S. Sutton
artificial-intelligence-manuals-han
coding
computer-science
machine-learning
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications
Joshua Chapmann - 2017
Right?! Machine Learning is a branch of computer science that wants to stop programming computers using a detailed list of commands to follow blindly. Instead, their aim is to implement high-level routines that teach computers how to approach new and unknown problems – these are called algorithms. In practice, they want to give computers the ability to Learn and to Adapt. We can use these algorithms to obtain insights, recognize patterns and make predictions from data, images, sounds or videos we have never seen before – or even knew existed. Unfortunately, the true power and applications of today’s Machine Learning Algorithms remain deeply misunderstood by most people. Through this book I want fix this confusion, I want to shed light on the most relevant Machine Learning Algorithms used in the industry. I will show you exactly how each algorithm works, why it works and when you should use it. Supervised Learning Algorithms K-Nearest Neighbour Naïve Bayes Regressions Unsupervised Learning Algorithms: Support Vector Machines Neural Networks Decision Trees
The Art and Science of Java
Eric S. Roberts - 2007
By following the recommendations of the Association of Computing Machinery's Java Task Force, this first edition text adopts a modern objects-first approach that introduces readers to useful hierarchies from the very beginning.KEY TOPICS: Introduction; Programming by Example; Expressions; Statement Forms; Methods; Objects and Classes; Objects and Memory; Strings and Characters; Object-Oriented Graphics; Event-Driven Programs; Arrays and ArrayLists; Searching and Sorting; Collection Classes; Looking Ahead.MARKET: A modern objects-first approach to the Java programming language that introduces readers to useful class hierarchies from the very beginning.
Artificial Intelligence: 101 Things You Must Know Today About Our Future
Lasse Rouhiainen - 2018
In fact, AI will dramatically change our entire society.You might have heard that many jobs will be replaced by automation and robots, but did you also know that at the same time a huge number of new jobs will be created by AI?This book covers many fascinating and timely topics related to artificial intelligence, including: self-driving cars, robots, chatbots, and how AI will impact the job market, business processes, and entire industries, just to name a few.This book is divided into ten chapters:Chapter I: Introduction to Artificial IntelligenceChapter II: How Artificial Intelligence Is Changing Many IndustriesChapter III: How Artificial Intelligence Is Changing Business ProcessesChapter IV: Chatbots and How They Will Change CommunicationChapter V: How Artificial Intelligence Is Changing the Job MarketChapter VI: Self-Driving Cars and How They Will Change Traffic as We Know ItChapter VII: Robots and How They Will Change Our LivesChapter VIII: Artificial Intelligence Activities of Big Technology CompaniesChapter IX: Frequently Asked Questions About Artificial Intelligence Part IChapter X: Frequently Asked Questions About Artificial Intelligence Part IITo enhance your learning experience and help make the concepts easier to understand, there are more than 85 visual presentations included throughout the book.You will learn the answers to 101 questions about artificial intelligence, and also have access to a large number of resources, ideas and tips that will help you to understand how artificial intelligence will change our lives.Who is this book for?Managers and business professionalsMarketers and influencersEntrepreneurs and startupsConsultants and coachesEducators and teachersStudents and life-long learnersAnd everyone else who is interested in our future.Are you ready to discover how artificial intelligence will impact your life This guidebook offers a multitude of tools, techniques and strategies that every business and individual can quickly apply and benefit from.
Build a Career in Data Science
Emily Robinson - 2020
Industry experts Jacqueline Nolis and Emily Robinson lay out the soft skills you’ll need alongside your technical know-how in order to succeed in the field. Following their clear and simple instructions you’ll craft a resume that hiring managers will love, learn how to ace your interview, and ensure you hit the ground running in your first months at your new job. Once you’ve gotten your foot in the door, learn to thrive as a data scientist by handling high expectations, dealing with stakeholders, and managing failures. Finally, you’ll look towards the future and learn about how to join the broader data science community, leaving a job gracefully, and plotting your career path. With this book by your side you’ll have everything you need to ensure a rewarding and productive role in data science.
Text Mining with R: A Tidy Approach
Julia Silge - 2017
With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective.The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.Learn how to apply the tidy text format to NLPUse sentiment analysis to mine the emotional content of textIdentify a document's most important terms with frequency measurementsExplore relationships and connections between words with the ggraph and widyr packagesConvert back and forth between R's tidy and non-tidy text formatsUse topic modeling to classify document collections into natural groupsExamine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages
Learning React: A Hands-On Guide to Building Maintainable, High-Performing Web Application User Interfaces Using the React JavaScript Library
Kirupa Chinnathambi - 2016
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
Python for Finance: Analyze Big Financial Data
Yves Hilpisch - 2012
This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance.Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include:Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practicesFinancial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regressionSpecial topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
The Rails 4 Way
Obie Fernandez - 2013
It has conquered developer mindshare at startups and enterprises alike with its focus of simplicity, convention and clean, maintainable code. The latest version, Rails 4, continues the tradition of enhanced performance, security and developer productivity, with improvements that enable professional developers to focus on what matters most: delivering business value quickly and consistently.The Rails™ 4 Way is the only comprehensive, authoritative guide to delivering production-quality code with Rails 4. Pioneering Rails expert Obie Fernandez and his team of leading Rails experts illuminate the entire set of Rails APIs, along with the idioms, design approaches, and libraries that make developing applications with Rails so powerful. Drawing on their unsurpassed experience and track record, they address the real challenges development teams face, showing how to use Rails to maximize your productivity.Using numerous detailed code examples, the author systematically cover Rails key capabilities and subsystems, making this book a reference that you depend on everyday. He presents advanced Rails programming techniques that have been proven effective in day-to-day usage on dozens of production Rails systems and offers important insights into behavior-driven development and production considerations such as scalability. Dive deep into the subtleties of the asset pipeline and other advanced Rails topics such as security and scalability. The Rails 4 Way is your best guide for making Rails do exactly what you want it to do.
Behind Deep Blue: Building the Computer That Defeated the World Chess Champion
Feng-Hsiung Hsu - 2002
Written by the man who started the adventure, Behind Deep Blue reveals the inside story of what happened behind the scenes at the two historic Deep Blue vs. Kasparov matches. This is also the story behind the quest to create the mother of all chess machines. The book unveils how a modest student project eventually produced a multimillion dollar supercomputer, from the development of the scientific ideas through technical setbacks, rivalry in the race to develop the ultimate chess machine, and wild controversies to the final triumph over the world's greatest human player.In nontechnical, conversational prose, Feng-hsiung Hsu, the system architect of Deep Blue, tells us how he and a small team of fellow researchers forged ahead at IBM with a project they'd begun as students at Carnegie Mellon in the mid-1980s: the search for one of the oldest holy grails in artificial intelligence--a machine that could beat any human chess player in a bona fide match. Back in 1949 science had conceived the foundations of modern chess computers but not until almost fifty years later--until Deep Blue--would the quest be realized.Hsu refutes Kasparov's controversial claim that only human intervention could have allowed Deep Blue to make its decisive, "uncomputerlike" moves. In riveting detail he describes the heightening tension in this war of brains and nerves, the "smoldering fire" in Kasparov's eyes. Behind Deep Blue is not just another tale of man versus machine. This fascinating book tells us how man as genius was given an ultimate, unforgettable run for his mind, no, not by the genius of a computer, but of man as toolmaker.
You Look Like a Thing and I Love You: How Artificial Intelligence Works and Why It's Making the World a Weirder Place
Janelle Shane - 2019
according to an artificial intelligence trained by scientist Janelle Shane, creator of the popular blog "AI Weirdness." She creates silly AIs that learn how to name paint colors, create the best recipes, and even flirt (badly) with humans--all to understand the technology that governs so much of our daily lives.We rely on AI every day for recommendations, for translations, and to put cat ears on our selfie videos. We also trust AI with matters of life and death, on the road and in our hospitals. But how smart is AI really, and how does it solve problems, understand humans, and even drive self-driving cars?Shane delivers the answers to every AI question you've ever asked, and some you definitely haven't--like, how can a computer design the perfect sandwich? What does robot-generated Harry Potter fan-fiction look like? And is the world's best Halloween costume really "Vampire Hog Bride"?In this smart, often hilarious introduction to the most interesting science of our time, Shane shows how these programs learn, fail, and adapt--and how they reflect the best and worst of humanity. You Look Like a Thing and I Love You is the perfect book for anyone curious about what the robots in our lives are thinking.
The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
Pedro Domingos - 2015
In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins
Garry Kasparov - 2017
It was the dawn of a new era in artificial intelligence: a machine capable of beating the reigning human champion at this most cerebral game. That moment was more than a century in the making, and in this breakthrough book, Kasparov reveals his astonishing side of the story for the first time. He describes how it felt to strategize against an implacable, untiring opponent with the whole world watching, and recounts the history of machine intelligence through the microcosm of chess, considered by generations of scientific pioneers to be a key to unlocking the secrets of human and machine cognition. Kasparov uses his unrivaled experience to look into the future of intelligent machines and sees it bright with possibility. As many critics decry artificial intelligence as a menace, particularly to human jobs, Kasparov shows how humanity can rise to new heights with the help of our most extraordinary creations, rather than fear them. Deep Thinking is a tightly argued case for technological progress, from the man who stood at its precipice with his own career at stake.