Mapping the Heavens: The Radical Scientific Ideas That Reveal the Cosmos


Priyamvada Natarajan - 2016
    If you want to understand the greatest ideas that shaped our current cosmic cartography, read this book.”—Adam G. Riess, Nobel Laureate in Physics, 2011   This book provides a tour of the “greatest hits” of cosmological discoveries—the ideas that reshaped our universe over the past century. The cosmos, once understood as a stagnant place, filled with the ordinary, is now a universe that is expanding at an accelerating pace, propelled by dark energy and structured by dark matter. Priyamvada Natarajan, our guide to these ideas, is someone at the forefront of the research—an astrophysicist who literally creates maps of invisible matter in the universe. She not only explains for a wide audience the science behind these essential ideas but also provides an understanding of how radical scientific theories gain acceptance.   The formation and growth of black holes, dark matter halos, the accelerating expansion of the universe, the echo of the big bang, the discovery of exoplanets, and the possibility of other universes—these are some of the puzzling cosmological topics of the early twenty-first century. Natarajan discusses why the acceptance of new ideas about the universe and our place in it has never been linear and always contested even within the scientific community. And she affirms that, shifting and incomplete as science always must be, it offers the best path we have toward making sense of our wondrous, mysterious universe.

The Tangled Tree: A Radical New History of Life


David Quammen - 2018
    In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important. For instance, we now know that roughly eight percent of the human genome arrived not through traditional inheritance from directly ancestral forms, but sideways by viral infection—a type of HGT.David Quammen chronicles these discoveries through the lives of the researchers who made them—such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.

Are We Smart Enough to Know How Smart Animals Are?


Frans de Waal - 2016
    But in recent decades, these claims have eroded, or even been disproven outright, by a revolution in the study of animal cognition. Take the way octopuses use coconut shells as tools; elephants that classify humans by age, gender, and language; or Ayumu, the young male chimpanzee at Kyoto University whose flash memory puts that of humans to shame. Based on research involving crows, dolphins, parrots, sheep, wasps, bats, whales, and of course chimpanzees and bonobos, Frans de Waal explores both the scope and the depth of animal intelligence. He offers a firsthand account of how science has stood traditional behaviorism on its head by revealing how smart animals really are, and how we’ve underestimated their abilities for too long.People often assume a cognitive ladder, from lower to higher forms, with our own intelligence at the top. But what if it is more like a bush, with cognition taking different forms that are often incomparable to ours? Would you presume yourself dumber than a squirrel because you’re less adept at recalling the locations of hundreds of buried acorns? Or would you judge your perception of your surroundings as more sophisticated than that of a echolocating bat? De Waal reviews the rise and fall of the mechanistic view of animals and opens our minds to the idea that animal minds are far more intricate and complex than we have assumed. De Waal’s landmark work will convince you to rethink everything you thought you knew about animal—and human—intelligence.

The Science of Everyday Life: Why Teapots Dribble, Toast Burns and Light Bulbs Shine


Marty Jopson - 2015
    Have you ever wondered why ice floats and water is such a freaky liquid? Or why chillies and mustard are both hot but in different ways? Or why microwaves don't cook from the inside out? In this fascinating scientific tour of household objects, The One Show presenter and all-round Science Bloke Marty Jopson has the answer to all of these, and many more, baffling questions about the chemistry and physics of the everyday stuff we use every day.

Dark Matter and the Dinosaurs: The Astounding Interconnectedness of the Universe


Lisa Randall - 2015
    Weaving together the cosmos' history and our own in an expanding intellectual adventure story, Dark Matter and the Dinosaurs takes us from the mysteries of dark matter and our cosmic environment to the conditions for life on Earth.Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter that is embedded in the plane of the Milky Way. Her research challenges the usual assumptions about the simple nature of dark matter and demonstrates how scientists formulate and establish new ideas. In a sense, it might have been dark matter that killed the dinosaurs.With her unique and wide-ranging perspective, Randall connects dark matter to the history of the world in the broadest terms. Bringing in pop culture and social and political viewpoints, she shares with us the latest findings—established and speculative—regarding dark matter, the cosmos, the galaxy, asteroids, comets, and impacts, as well as life's development and extinctions. Randall makes clear how connected the planet is to the makeup of the Universe, but also how fragile our place in the Universe, which evolved over billions of years, might be.In this brilliant and fresh exploration of our cosmic environment, Professor Randall explains the underlying science of our world in the breathtaking tale of a Universe in which the small and the large, the visible and the hidden are intimately related. Dark Matter and the Dinosaurs illuminates the deep relationships that are critical to our world as well as the astonishing beauty of the structures and connections that surround us. It's impossible to read this book and look at either Earth or sky again in the same way.

The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter


Paul J. Steinhardt - 2019
    “A riveting tale of derring-do” (Nature), this book reads like James Gleick’s Chaos combined with an Indiana Jones adventure.When leading Princeton physicist Paul Steinhardt began working in the 1980s, scientists thought they knew all the conceivable forms of matter. The Second Kind of Impossible is the story of Steinhardt’s thirty-five-year-long quest to challenge conventional wisdom. It begins with a curious geometric pattern that inspires two theoretical physicists to propose a radically new type of matter—one that raises the possibility of new materials with never before seen properties, but that violates laws set in stone for centuries. Steinhardt dubs this new form of matter “quasicrystal.” The rest of the scientific community calls it simply impossible. The Second Kind of Impossible captures Steinhardt’s scientific odyssey as it unfolds over decades, first to prove viability, and then to pursue his wildest conjecture—that nature made quasicrystals long before humans discovered them. Along the way, his team encounters clandestine collectors, corrupt scientists, secret diaries, international smugglers, and KGB agents. Their quest culminates in a daring expedition to a distant corner of the Earth, in pursuit of tiny fragments of a meteorite forged at the birth of the solar system. Steinhardt’s discoveries chart a new direction in science. They not only change our ideas about patterns and matter, but also reveal new truths about the processes that shaped our solar system. The underlying science is important, simple, and beautiful—and Steinhardt’s firsthand account is “packed with discovery, disappointment, exhilaration, and persistence...This book is a front-row seat to history as it is made” (Nature).

Origins: How Earth's History Shaped Human History


Lewis Dartnell - 2019
    But how has the earth itself determined our destiny? Our planet wobbles, driving changes in climate that forced the transition from nomadism to farming. Mountainous terrain led to the development of democracy in Greece. Atmospheric circulation patterns later on shaped the progression of global exploration, colonization, and trade. Even today, voting behavior in the south-east United States ultimately follows the underlying pattern of 75 million-year-old sediments from an ancient sea. Everywhere is the deep imprint of the planetary on the human.From the cultivation of the first crops to the founding of modern states, Origins reveals the breathtaking impact of the earth beneath our feet on the shape of our human civilizations.

The End of Night: Searching for Natural Darkness in an Age of Artificial Light


Paul Bogard - 2013
    A starry night is one of nature's most magical wonders, yet in our artificially lit world, three-quarters of Americans' eyes never switch to night vision, and most no longer experience true darkness. In The End of Night, Paul Bogard restores awareness of the spectacularly primal, wildly dark night sky and how it has influenced the human experience across everything from science to art.From Las Vegas's Luxor Beam (the brightest single spot on this planet) to nights so starlit the sky looks like snow, Bogard blends personal narrative, natural history, science, and history to shed light on the importance of darkness--what we've lost, what we still have, and what we might regain--and the simple ways we can reduce the brightness of our nights tonight.

The Book of Nothing: Vacuums, Voids, and the Latest Ideas about the Origins of the Universe


John D. Barrow - 2000
    Augustine equate nothingness with the Devil? What tortuous means did 17th-century scientists employ in their attempts to create a vacuum? And why do contemporary quantum physicists believe that the void is actually seething with subatomic activity? You’ll find the answers in this dizzyingly erudite and elegantly explained book by the English cosmologist John D. Barrow.Ranging through mathematics, theology, philosophy, literature, particle physics, and cosmology, The Book of Nothing explores the enduring hold that vacuity has exercised on the human imagination. Combining high-wire speculation with a wealth of reference that takes in Freddy Mercury and Shakespeare alongside Isaac Newton, Albert Einstein, and Stephen Hawking, the result is a fascinating excursion to the vanishing point of our knowledge.

Einstein's Monsters: The Life and Times of Black Holes


Chris Impey - 2018
    Every massive star leaves behind a black hole when it dies, and every galaxy harbors a supermassive black hole at its center. Frighteningly enigmatic, these dark giants continue to astound even the scientists who spend their careers studying them. Which came first, the galaxy or its central black hole? What happens if you travel into one—instant death or something weirder? And, perhaps most important, how can we ever know anything for sure about black holes when they destroy information by their very nature?In Einstein’s Monsters, distinguished astronomer Chris Impey takes readers on an exploration of these and other questions at the cutting edge of astrophysics, as well as the history of black holes’ role in theoretical physics—from confirming Einstein’s equations for general relativity to testing string theory. He blends this history with a poignant account of the phenomena scientists have witnessed while observing black holes: stars swarming like bees around the center of our galaxy; black holes performing gravitational waltzes with visible stars; the cymbal clash of two black holes colliding, releasing ripples in space-time.Clear, compelling, and profound, Einstein’s Monsters reveals how our comprehension of black holes is intrinsically linked to how we make sense of the universe and our place within it. From the small questions to the big ones—from the tiniest particles to the nature of space-time itself—black holes might be the key to a deeper understanding of the cosmos.

She Has Her Mother's Laugh: The Powers, Perversions, and Potential of Heredity


Carl Zimmer - 2018
    Charles Darwin played a crucial part in turning heredity into a scientific question, and yet he failed spectacularly to answer it. The birth of genetics in the early 1900s seemed to do precisely that. Gradually, people translated their old notions about heredity into a language of genes. As the technology for studying genes became cheaper, millions of people ordered genetic tests to link themselves to missing parents, to distant ancestors, to ethnic identities. . . .But, Zimmer writes, "Each of us carries an amalgam of fragments of DNA, stitched together from some of our many ancestors. Each piece has its own ancestry, traveling a different path back through human history. A particular fragment may sometimes be cause for worry, but most of our DNA influences who we are--our appearance, our height, our penchants--in inconceivably subtle ways." Heredity isn't just about genes that pass from parent to child. Heredity continues within our own bodies, as a single cell gives rise to trillions of cells that make up our bodies. We say we inherit genes from our ancestors--using a word that once referred to kingdoms and estates--but we inherit other things that matter as much or more to our lives, from microbes to technologies we use to make life more comfortable. We need a new definition of what heredity is and, through Carl Zimmer's lucid exposition and storytelling, this resounding tour de force delivers it. Weaving historical and current scientific research, his own experience with his two daughters, and the kind of original reporting expected of one of the world's best science journalists, Zimmer ultimately unpacks urgent bioethical quandaries arising from new biomedical technologies, but also long-standing presumptions about who we really are and what we can pass on to future generations.

Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness


Peter Godfrey-Smith - 2016
    In captivity, octopuses have been known to identify individual human keepers, raid neighboring tanks for food, turn off lightbulbs by spouting jets of water, plug drains, and make daring escapes. How is it that a creature with such gifts evolved through an evolutionary lineage so radically distant from our own? What does it mean that evolution built minds not once but at least twice? The octopus is the closest we will come to meeting an intelligent alien. What can we learn from the encounter?In Other Minds, Peter Godfrey-Smith, a distinguished philosopher of science and a skilled scuba diver, tells a bold new story of how subjective experience crept into being—how nature became aware of itself. As Godfrey-Smith stresses, it is a story that largely occurs in the ocean, where animals first appeared. Tracking the mind’s fitful development, Godfrey-Smith shows how unruly clumps of seaborne cells began living together and became capable of sensing, acting, and signaling. As these primitive organisms became more entangled with others, they grew more complicated. The first nervous systems evolved, probably in ancient relatives of jellyfish; later on, the cephalopods, which began as inconspicuous mollusks, abandoned their shells and rose above the ocean floor, searching for prey and acquiring the greater intelligence needed to do so. Taking an independent route, mammals and birds later began their own evolutionary journeys.But what kind of intelligence do cephalopods possess? Drawing on the latest scientific research and his own scuba-diving adventures, Godfrey-Smith probes the many mysteries that surround the lineage. How did the octopus, a solitary creature with little social life, become so smart? What is it like to have eight tentacles that are so packed with neurons that they virtually “think for themselves”? What happens when some octopuses abandon their hermit-like ways and congregate, as they do in a unique location off the coast of Australia?By tracing the question of inner life back to its roots and comparing human beings with our most remarkable animal relatives, Godfrey-Smith casts crucial new light on the octopus mind—and on our own.

The Epigenetics Revolution


Nessa Carey - 2011
    The Human Genome Project finished sequencing human DNA. It seemed it was only a matter of time until we had all the answers to the secrets of life on this planet. The cutting-edge of biology, however, is telling us that we still don't even know all of the questions. How is it that, despite each cell in your body carrying exactly the same DNA, you don't have teeth growing out of your eyeballs or toenails on your liver? How is it that identical twins share exactly the same DNA and yet can exhibit dramatic differences in the way that they live and grow? It turns out that cells read the genetic code in DNA more like a script to be interpreted than a mould that replicates the same result each time. This is epigenetics and it's the fastest-moving field in biology today. The Epigenetics Revolution traces the thrilling path this discipline has taken over the last twenty years. Biologist Nessa Carey deftly explains such diverse phenomena as how queen bees and ants control their colonies, why tortoiseshell cats are always female, why some plants need a period of cold before they can flower, why we age, develop disease and become addicted to drugs, and much more. Most excitingly, Carey reveals the amazing possibilities for humankind that epigenetics offers for us all - and in the surprisingly near future.

Dinosaur in a Haystack


Stephen Jay Gould - 1995
    With black and white illustrations. "Here is a new collection of Gould's unexpected connections between evolution and all manner of subjects, literature high among them. Gathered from his monthly column in "Natural History" magazine, these articles should delight, surprise, and inform his vast readership, as have his six prior volumes of essays. Somehow the light bulb pops on every month as his deadline approaches, some glowing fact pulled out of memory--often a line from Shakespeare or Tennyson--that illumines a generality Gould wishes to discuss. "Nature, red in tooth and claw" (Lord Alfred's line) induces dilations on the extent science can inform moral matters (not much, Gould believes); a remembrance of the infamous Wansee protocol prompts Gould's denunciation of the genocidal looting of evolutionary theory and, by extension, its vulnerability to ignoramuses in general. These two examples of the Gouldian essay method, fortunately, don't foreshadow a gloomy parade of topics: Gould can as easily alight at the fun house where mass culture absorbs ideas about evolution through movies of monsters run amok from Frankenstein to Jurassic Park. In other essays, he plunges directly into matters of evolutionary interpretation but customarily employs a literary twist: who else but Gould could link Edgar Allan Poe with his own area of professional eminence, the paleontology of snails? A discovery awaits in every essay--in every haystack--which solidifies Gould as one of the most eloquent science popularizers writing today."--"Booklist"

The Beginning and the End of Everything: From the Big Bang to the End of the Universe


Paul Parsons - 2018
    Authoritative and engaging, Paul Parsons takes us on a rollercoaster ride through billions of light years to tell the story of the Big Bang, from birth to death.13.8 billion years ago, something incredible happened. Matter, energy, space and time all suddenly burst into existence in a cataclysmic event that’s come to be known as the Big Bang. It was the birth of our universe. What started life smaller than the tiniest subatomic particle is now unimaginably vast and plays home to trillions of galaxies. The formulation of the Big Bang theory is a story that combines some of the most far-reaching concepts in fundamental physics with equally profound observations of the cosmos.From our realization that we are on a planet orbiting a star in one of many galaxies, to the discovery that our universe is expanding, to the groundbreaking theories of Einstein that laid the groundwork for the Big Bang cosmology of today – as each new discovery deepens our understanding of the origins of our universe, a clearer picture is forming of how it will all end. Will we ultimately burn out or fade away? Could the end simply signal a new beginning, as the universe rebounds into a fresh expanding phase? And was our Big Bang just one of many, making our cosmos only a small part of a sprawling multiverse of parallel universes?