Elements of Clojure


Zachary Tellman - 2019
    This is necessary because, in the words of Michael Polanyi, "we can know more than we can tell." Our design choices are not the result of an ineluctable chain of logic; they come from a deeper place, one which is visceral and inarticulate.Polanyi calls this "tacit knowledge", a thing which we only understand as part of something else. When we speak, we do not focus on making sounds, we focus on our words. We understand the muscular act of speech, but would struggle to explain it.To write software, we must learn where to draw boundaries. Good software is built through effective indirection. We seem to have decided that this skill can only be learned through practice; it cannot be taught, except by example. Our decisions may improve with time, but not our ability to explain them. It's true that the study of these questions cannot yield a closed-form solution for judging software design. We can make our software simple, but we cannot do the same to its problem domain, its users, or the physical world. Our tacit knowledge of this environment will always inform our designs.This doesn't mean that we can simply ignore our design process. Polanyi tells us that tacit knowledge only suffices until we fail, and the software industry is awash with failure. Our designs may never be provably correct, but we can give voice to the intuition that shaped them. Our process may always be visceral, but it doesn't have to be inarticulate.And so this book does not offer knowledge, it offers clarity. It is aimed at readers who know Clojure, but struggle to articulate the rationale of their designs to themselves and others. Readers who use other languages, but have a passing familiarity with Clojure, may also find this book useful.

Docker: Up & Running: Shipping Reliable Containers in Production


Karl Matthias - 2015
    But understanding how Linux containers fit into your workflow--and getting the integration details right--are not trivial tasks. With this practical guide, you'll learn how to use Docker to package your applications with all of their dependencies, and then test, ship, scale, and support your containers in production.Two Lead Site Reliability Engineers at New Relic share much of what they have learned from using Docker in production since shortly after its initial release. Their goal is to help you reap the benefits of this technology while avoiding the many setbacks they experienced.Learn how Docker simplifies dependency management and deployment workflow for your applicationsStart working with Docker images, containers, and command line toolsUse practical techniques to deploy and test Docker-based Linux containers in productionDebug containers by understanding their composition and internal processesDeploy production containers at scale inside your data center or cloud environmentExplore advanced Docker topics, including deployment tools, networking, orchestration, security, and configuration

PHP Objects, Patterns, and Practice


Matt Zandstra - 2007
    Borne from a contract developer's pet project, these days you'll find PHP powering many of the world's largest web sites, including Yahoo!, Digg, EA Games, and Lycos.PHP Objects, Patterns, and Practice, Second Edition shows you how to meld the power of PHP with the sound enterprise development techniques embraced by professional programmers. Going well beyond the basics of objectoriented development, you'll learn about advanced topics such as working with static methods and properties, abstract classes, interfaces, design patterns, exception handling, and more. You'll also be exposed to key tools such as PEAR, CVS, Phing, and phpDocumentor. What you'll learn Write solid, maintainable code by embracing objectoriented techniques and design patterns Create detailed, versatile documentation using the powerful phpDocumentor automated documentation system Gain new flexibility during the development process by managing your code within a CVS repository and using the Phing build system Capitalize upon the quality code of others by using the PEAR package management solution Who this book is forPHP developers seeking to embrace sound development techniques such as objectorientation, design patterns, testing, and documentation. "

Chaos Engineering


Casey Rosenthal - 2017
    You’ll never be able to prevent all possible failure modes, but you can identify many of the weaknesses in your system before they’re triggered by these events. This report introduces you to Chaos Engineering, a method of experimenting on infrastructure that lets you expose weaknesses before they become a real problem.Members of the Netflix team that developed Chaos Engineering explain how to apply these principles to your own system. By introducing controlled experiments, you’ll learn how emergent behavior from component interactions can cause your system to drift into an unsafe, chaotic state.- Hypothesize about steady state by collecting data on the health of the system- Vary real-world events by turning off a server to simulate regional failures- Run your experiments as close to the production environment as possible- Ramp up your experiment by automating it to run continuously- Minimize the effects of your experiments to keep from blowing everything up- Learn the process for designing chaos engineering experiments- Use the Chaos Maturity Model to map the state of your chaos program, including realistic goals

Exercises in Programming Style


Cristina Videira Lopes - 2014
    It is designed to be used in conjunction with code provided on an online repository. The book complements and explains the raw code in a way that is accessible to anyone who regularly practices the art of programming. The book can also be used in advanced programming courses in computer science and software engineering programs.The book contains 33 different styles for writing the term frequency task. The styles are grouped into nine categories: historical, basic, function composition, objects and object interactions, reflection and metaprogramming, adversity, data-centric, concurrency, and interactivity. The author verbalizes the constraints in each style and explains the example programs. Each chapter first presents the constraints of the style, next shows an example program, and then gives a detailed explanation of the code. Most chapters also have sections focusing on the use of the style in systems design as well as sections describing the historical context in which the programming style emerged.

Becoming a Better Programmer


Pete Goodliffe - 2014
    Code Craft author Pete Goodliffe presents a collection of useful techniques and approaches to the art and craft of programming that will help boost your career and your well-being.Goodliffe presents sound advice that he's learned in 15 years of professional programming. The book's standalone chapters span the range of a software developer's life--dealing with code, learning the trade, and improving performance--with no language or industry bias. Whether you're a seasoned developer, a neophyte professional, or a hobbyist, you'll find valuable tips in five independent categories:Code-level techniques for crafting lines of code, testing, debugging, and coping with complexityPractices, approaches, and attitudes: keep it simple, collaborate well, reuse, and create malleable codeTactics for learning effectively, behaving ethically, finding challenges, and avoiding stagnationPractical ways to complete things: use the right tools, know what "done" looks like, and seek help from colleaguesHabits for working well with others, and pursuing development as a social activity

An Introduction to Functional Programming Through Lambda Calculus


Greg Michaelson - 1989
    This well-respected text offers an accessible introduction to functional programming concepts and techniques for students of mathematics and computer science. The treatment is as nontechnical as possible, and it assumes no prior knowledge of mathematics or functional programming. Cogent examples illuminate the central ideas, and numerous exercises appear throughout the text, offering reinforcement of key concepts. All problems feature complete solutions.

Data and Reality


William Kent - 1978
    

The Implementation (TCP/IP Illustrated, Volume 2)


Gary R. Wright - 1995
    "TCP/IP Illustrated, Volume 2" contains a thorough explanation of how TCP/IP protocols are implemented. There isn't a more practical or up-to-date bookothis volume is the only one to cover the de facto standard implementation from the 4.4BSD-Lite release, the foundation for TCP/IP implementations run daily on hundreds of thousands of systems worldwide. Combining 500 illustrations with 15,000 lines of real, working code, "TCP/IP Illustrated, Volume 2" uses a teach-by-example approach to help you master TCP/IP implementation. You will learn about such topics as the relationship between the sockets API and the protocol suite, and the differences between a host implementation and a router. In addition, the book covers the newest features of the 4.4BSD-Lite release, including multicasting, long fat pipe support, window scale, timestamp options, and protection against wrapped sequence numbers, and many other topics. Comprehensive in scope, based on a working standard, and thoroughly illustrated, this book is an indispensable resource for anyone working with TCP/IP.

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Understanding Computation: From Simple Machines to Impossible Programs


Tom Stuart - 2013
    Understanding Computation explains theoretical computer science in a context you’ll recognize, helping you appreciate why these ideas matter and how they can inform your day-to-day programming.Rather than use mathematical notation or an unfamiliar academic programming language like Haskell or Lisp, this book uses Ruby in a reductionist manner to present formal semantics, automata theory, and functional programming with the lambda calculus. It’s ideal for programmers versed in modern languages, with little or no formal training in computer science.* Understand fundamental computing concepts, such as Turing completeness in languages* Discover how programs use dynamic semantics to communicate ideas to machines* Explore what a computer can do when reduced to its bare essentials* Learn how universal Turing machines led to today’s general-purpose computers* Perform complex calculations, using simple languages and cellular automata* Determine which programming language features are essential for computation* Examine how halting and self-referencing make some computing problems unsolvable* Analyze programs by using abstract interpretation and type systems

Elixir in Action


Saša Jurić - 2015
    Revised and updated for the Elixir 1.7, Elixir in Action, Second Edition teaches you how to apply Elixir to practical problems associated with scalability, fault tolerance, and high availability. Along the way, you'll develop an appreciation for, and considerable skill in, a functional and concurrent style of programming.

Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software


Scott Rosenberg - 2007
    Along the way, we encounter black holes, turtles, snakes, dragons, axe-sharpening, and yak-shaving—and take a guided tour through the theories and methods, both brilliant and misguided, that litter the history of software development, from the famous ‘mythical man-month’ to Extreme Programming. Not just for technophiles but for anyone captivated by the drama of invention, Dreaming in Code offers a window into both the information age and the workings of the human mind.

High Performance JavaScript


Nicholas C. Zakas - 2010
    The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstrate optimal ways to load code onto a page, and offer programming tips to help your JavaScript run as efficiently and quickly as possible. You'll learn the best practices to build and deploy your files to a production environment, and tools that can help you find problems once your site goes live. Identify problem code and use faster alternatives to accomplish the same task Improve scripts by learning how JavaScript stores and accesses data Implement JavaScript code so that it doesn't slow down interaction with the DOM Use optimization techniques to improve runtime performance Learn ways to ensure the UI is responsive at all times Achieve faster client-server communication Use a build system to minify files, and HTTP compression to deliver them to the browser