A Field Guide to the Birds of Borneo, Sumatra, Java, and Bali: The Greater Sunda Islands
John MacKinnon - 1993
This book provides the first complete identification guides to the birds of this teeming tropical paradise. It gives descriptions of 820 regional species, illustrated in 88 specially commissioned color plates accompanied by notes detailing distinctive features and habitats. Entries cover nomenclature, plumage, markings, voice, global range, distribution and regional status, habits, and diet. The main text gives practical information on where to find many exotic species, citing major birdwatching locations. Introductory chapters discuss habitats, climate, land-use, and conservation concerns. Professional ornithologists and amateur bird watchers alike will find this the indispensable bird guide for eastern Malaysia and western Indonesia for many years to come. It is also an unrivalled source of information for casual travellers and ecotourists.
Packing for Mars: The Curious Science of Life in the Void
Mary Roach - 2010
From the Space Shuttle training toilet to a crash test of NASA’s new space capsule, Mary Roach takes us on the surreally entertaining trip into the science of life in space and space on Earth.
Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science
David Lindley - 2007
Heisenberg’s principle implied that scientific quantities/concepts do not have absolute, independent meaning, but acquire meaning only in terms of the experiments used to measure them. This proposition, undermining the cherished belief that science could reveal the physical world with limitless detail and precision, placed Heisenberg in direct opposition to the revered Albert Einstein. The eminent scientist Niels Bohr, Heisenberg’s mentor and Einstein’s long-time friend, found himself caught between the two.Uncertainty chronicles the birth and evolution of one of the most significant findings in the history of science, and portrays the clash of ideas and personalities it provoked. Einstein was emotionally as well as intellectually determined to prove the uncertainty principle false. Heisenberg represented a new generation of physicists who believed that quantum theory overthrew the old certainties; confident of his reasoning, Heisenberg dismissed Einstein’s objections. Bohr understood that Heisenberg was correct, but he also recognized the vital necessity of gaining Einstein’s support as the world faced the shocking implications of Heisenberg’s principle.
Music by the Numbers: From Pythagoras to Schoenberg
Eli Maor - 2018
Yet Eli Maor argues that music has influenced math at least as much as math has influenced music. Starting with Pythagoras, proceeding through the work of Schoenberg, and ending with contemporary string theory, Music by the Numbers tells a fascinating story of composers, scientists, inventors, and eccentrics who played a role in the age-old relationship between music, mathematics, and the sciences, especially physics and astronomy. Music by the Numbers explores key moments in this history, particularly how problems originating in music have inspired mathematicians for centuries. Perhaps the most famous of these problems is the vibrating string, which pitted some of the greatest mathematicians of the eighteenth century against each other in a debate that lasted more than fifty years and that eventually led to the development of post-calculus mathematics. Other highlights in the book include a comparison between meter in music and metric in geometry, complete with examples of rhythmic patterns from Bach to Stravinsky, and an exploration of a suggestive twentieth-century development: the nearly simultaneous emergence of Einstein's theory of relativity and Schoenberg's twelve-tone system.Weaving these compelling historical episodes with Maor's personal reflections as a mathematician and lover of classical music, Music by the Numbers will delight anyone who loves mathematics and music.
Stars: A Guide to the Constellations, Sun, Moon, Planets, and Other Features of the Heavens
Herbert S. Zim - 1951
Also discusses meteors, comets, eclipses, and other celestial objects.
The Perfection Point: Sport Science Predicts the Fastest Man, the Highest Jump, and the Limits of Athletic Performance
John Brenkus - 2010
The Perfection Point is ideal for sports fans interested in the scientific basis of athletic excellence and a fascinating read for science fans interested in the physics of sports.
Time's Arrow, Time's Cycle: Myth and Metaphor in the Discovery of Geological Time
Stephen Jay Gould - 1987
But such is Stephen Jay Gould's command of paleontology and evolutionary theory, and his gift for brilliant explication, that he has brought dust and dead bones to life, and developed an immense following for the seeming arcana of this field.In Time's Arrow, Time's Cycle his subject is nothing less than geology's signal contribution to human thought--the discovery of "deep time," the vastness of earth's history, a history so ancient that we can comprehend it only as metaphor. He follows a single thread through three documents that mark the transition in our thinking from thousands to billions of years: Thomas Burnet's four-volume Sacred Theory of the Earth (1680-1690), James Hutton's Theory of the Earth (1795), and Charles Lyell's three-volume Principles of Geology (1830-1833).Gould's major theme is the role of metaphor in the formulation and testing of scientific theories--in this case the insight provided by the oldest traditional dichotomy of Judeo-Christian thought: the directionality of time's arrow or the immanence of time's cycle. Gould follows these metaphors through these three great documents and shows how their influence, more than the empirical observation of rocks in the field, provoked the supposed discovery of deep time by Hutton and Lyell. Gould breaks through the traditional "cardboard" history of geological textbooks (the progressive march to truth inspired by more and better observations) by showing that Burnet, the villain of conventional accounts, was a rationalist (not a theologically driven miracle-monger) whose rich reconstruction of earth history emphasized the need for both time's arrow (narrative history) and time's cycle (immanent laws), while Hutton and Lyell, our traditional heroes, denied the richness of history by their exclusive focus upon time's Arrow.
The Search for Exoplanets: What Astronomers Know
Joshua N. Winn - 2015
Thanks to advances in technology and clever new uses of existing data, now we know that planetary systems and possibly even a new Earth can be found throughout galaxies near and far.We are living during a new golden age of planetary discovery, with the prospect of finding many worlds like Earth. Most of the thousands of planets we've detected can't be imaged directly, but researchers are able to use subtle clues obtained in ingenious ways to assemble an astonishing picture of planetary systems far different from our own. We are in the midst of an astronomical revolution, comparable to the Copernican revolution that established our current view of the solar system - and we invite you to take part.Embark on this unrivaled adventure in 24 lectures by a veteran planet hunter. Designed for everyone from armchair explorers to serious skywatchers, The Search for Exoplanets follows the numerous twists and turns in the hunt for exoplanets - the false starts, the sudden breakthroughs, and the extraordinary discoveries. Explore systems containing super-Earths, mini-Neptunes, lava worlds, and even stranger worlds. You also get behind-the-scenes information on the techniques astronomers used to find evidence of planets at mind-boggling distances from our home base. Learn how astronomers determine how many planets are in a system as well as how large they are and the characteristics of their atmospheres. You will feel like Dr. Watson in the presence of Sherlock Holmes as Professor Winn extracts a wealth of information from a spectrum, a light graph, a diffraction pattern, and other subtle clues.©2015 The Teaching Company, LLC (P)2015 The Great Courses
Faraday, Maxwell, and the Electromagnetic Field: How Two Men Revolutionized Physics
Nancy Forbes - 2014
This is the story of how these two men - separated in age by forty years - discovered the existence of the electromagnetic field and devised a radically new theory which overturned the strictly mechanical view of the world that had prevailed since Newton's time.The authors, veteran science writers with special expertise in physics and engineering, have created a lively narrative that interweaves rich biographical detail from each man's life with clear explanations of their scientific accomplishments. Faraday was an autodidact, who overcame class prejudice and a lack of mathematical training to become renowned for his acute powers of experimental observation, technological skills, and prodigious scientific imagination. James Clerk Maxwell was highly regarded as one of the most brilliant mathematical physicists of the age. He made an enormous number of advances in his own right. But when he translated Faraday's ideas into mathematical language, thus creating field theory, this unified framework of electricity, magnetism and light became the basis for much of later, 20th-century physics.Faraday's and Maxwell's collaborative efforts gave rise to many of the technological innovations we take for granted today - from electric power generation to television, and much more. Told with panache, warmth, and clarity, this captivating story of their greatest work - in which each played an equal part - and their inspiring lives will bring new appreciation to these giants of science.
Reinventing Gravity: A Physicist Goes Beyond Einstein
John W. Moffat - 2008
But what if, nonetheless, Einstein got it wrong?Since the 1930s, physicists have noticed an alarming discrepancy between the universe as we see it and the universe that Einstein's theory of relativity predicts. There just doesn't seem to be enough stuff out there for everything to hang together. Galaxies spin so fast that, based on the amount of visible matter in them, they ought to be flung to pieces, the same way a spinning yo-yo can break its string. Cosmologists tried to solve the problem by positing dark matter—a mysterious, invisible substance that surrounds galaxies, holding the visible matter in place—and particle physicists, attempting to identify the nature of the stuff, have undertaken a slew of experiments to detect it. So far, none have.Now, John W. Moffat, a physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, offers a different solution to the problem. The capstone to a storybook career—one that began with a correspondence with Einstein and a conversation with Niels Bohr—Moffat's modified gravity theory, or MOG, can model the movements of the universe without recourse to dark matter, and his work challenging the constancy of the speed of light raises a stark challenge to the usual models of the first half-million years of the universe's existence.This bold new work, presenting the entirety of Moffat's hypothesis to a general readership for the first time, promises to overturn everything we thought we knew about the origins and evolution of the universe.
The Hubble Cosmos: 25 Years of New Vistas in Space
David H. DeVorkin - 2015
Relive key moments in the monumental Hubble story, from launch through major new instrumentation to the promise of discoveries to come. With more than 150 photographs including Hubble All-Stars—the most famous of all the noteworthy images—The Hubble Cosmos shows how this telescope is revolutionizing our understanding of the universe.
Rock Climbing Technique: The Practical Guide to Movement Mastery
John Kettle - 2018
It doesn’t need to be a balancing act between losing fitness and getting injured overtraining. Climbing is fundamentally a skill-based sport, and this guide will change the way you look at moving on rock.Whatever your ability, learning to master smooth, relaxed and powerful movement means maximising your enjoyment and performance of the sport. This is the definitive practical guide to improving your rock climbing technique, and making you a more efficient climber. Fully illustrated with over 35 skills exercises supported by online videos, this book allows you to plan out your path to excellent technique with drills and exercises suited to all levels of ability.Written by the UK's leading climbing movement specialist, it’s packed with the knowledge and expertise gained over two decades as a professional climbing coach. Essential reading for all climbers from intermediate to elite in sport climbing, bouldering and traditional climbing.
Deep Future
Stephen Baxter - 1985
Along the way Stephen Baxter looks at our place in the universe, considers the possibility that we are in fact alone, and wonders whether that fact gives us the right to inherit everything. He also looks at how we might strive to overcome the limitations of the physical universe and win the deepest future. Stephen Baxter has brought his trademark narrative flair and imaginative brilliance to the latest ideas in physics and cosmology and produced a breathtaking guide to our possible futures.
Faust in Copenhagen: A Struggle for the Soul of Physics
Gino Segrè - 2007
However, while physicists celebrated these momentous discoveries—which presaged the era of big science and nuclear bombs—Europe was moving inexorably toward totalitarianism and war. In April of that year, about forty of the world’s leading physicists—including Werner Heisenberg, Lise Meitner, and Paul Dirac—came to Niels Bohr’s Copenhagen Institute for their annual informal meeting about the frontiers of physics. Physicist Gino Segrè brings to life this historic gathering, which ended with a humorous skit based on Goethe’s Faust—a skit that eerily foreshadowed events that would soon unfold. Little did the scientists know the Faustian bargains they would face in the near future. Capturing the interplay between the great scientists as well as the discoveries they discussed and debated, Segrè evokes the moment when physics—and the world—was about to lose its innocence.
Life in the Universe
Jeffrey O. Bennett - 2002
It has been developed specifically for emerging courses in astrobiology, though it can also be used for introductory astronomy.