Streaming Systems
Tyler Akidau - 2018
As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way.Expanded from Tyler Akidau's popular blog posts Streaming 101 and Streaming 102, this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You'll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax.You'll explore:How streaming and batch data processing patterns compareThe core principles and concepts behind robust out-of-order data processingHow watermarks track progress and completeness in infinite datasetsHow exactly-once data processing techniques ensure correctnessHow the concepts of streams and tables form the foundations of both batch and streaming data processingThe practical motivations behind a powerful persistent state mechanism, driven by a real-world exampleHow time-varying relations provide a link between stream processing and the world of SQL and relational algebra
Spark: The Definitive Guide: Big Data Processing Made Simple
Bill Chambers - 2018
With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals.
You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library.
Get a gentle overview of big data and Spark
Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples
Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames
Understand how Spark runs on a cluster
Debug, monitor, and tune Spark clusters and applications
Learn the power of Structured Streaming, Spark’s stream-processing engine
Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine
Clinton Gormley - 2014
This practical guide not only shows you how to search, analyze, and explore data with Elasticsearch, but also helps you deal with the complexities of human language, geolocation, and relationships.If you're a newcomer to both search and distributed systems, you'll quickly learn how to integrate Elasticsearch into your application. More experienced users will pick up lots of advanced techniques. Throughout the book, you'll follow a problem-based approach to learn why, when, and how to use Elasticsearch features.Understand how Elasticsearch interprets data in your documentsIndex and query your data to take advantage of search concepts such as relevance and word proximityHandle human language through the effective use of analyzers and queriesSummarize and group data to show overall trends, with aggregations and analyticsUse geo-points and geo-shapes--Elasticsearch's approaches to geolocationModel your data to take advantage of Elasticsearch's horizontal scalabilityLearn how to configure and monitor your cluster in production
Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale
Neha Narkhede - 2017
And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems
Hadoop: The Definitive Guide
Tom White - 2009
Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!
ZooKeeper: Distributed process coordination
Flavio Junqueira - 2013
This practical guide shows how Apache ZooKeeper helps you manage distributed systems, so you can focus mainly on application logic. Even with ZooKeeper, implementing coordination tasks is not trivial, but this book provides good practices to give you a head start, and points out caveats that developers and administrators alike need to watch for along the way.In three separate sections, ZooKeeper contributors Flavio Junqueira and Benjamin Reed introduce the principles of distributed systems, provide ZooKeeper programming techniques, and include the information you need to administer this service.Learn how ZooKeeper solves common coordination tasksExplore the ZooKeeper API’s Java and C implementations and how they differUse methods to track and react to ZooKeeper state changesHandle failures of the network, application processes, and ZooKeeper itselfLearn about ZooKeeper’s trickier aspects dealing with concurrency, ordering, and configurationUse the Curator high-level interface for connection managementBecome familiar with ZooKeeper internals and administration tools
Programming Groovy
Venkat Subramaniam - 2008
But recently, the industry has turned to dynamic languages for increased productivity and speed to market.Groovy is one of a new breed of dynamic languages that run on the Java platform. You can use these new languages on the JVM and intermix them with your existing Java code. You can leverage your Java investments while benefiting from advanced features including true Closures, Meta Programming, the ability to create internal DSLs, and a higher level of abstraction.If you're an experienced Java developer, Programming Groovy will help you learn the necessary fundamentals of programming in Groovy. You'll see how to use Groovy to do advanced programming including using Meta Programming, Builders, Unit Testing with Mock objects, processing XML, working with Databases and creating your own Domain-Specific Languages (DSLs).
Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement
Eric Redmond - 2012
As a modern application developer you need to understand the emerging field of data management, both RDBMS and NoSQL. Seven Databases in Seven Weeks takes you on a tour of some of the hottest open source databases today. In the tradition of Bruce A. Tate's Seven Languages in Seven Weeks, this book goes beyond your basic tutorial to explore the essential concepts at the core each technology. Redis, Neo4J, CouchDB, MongoDB, HBase, Riak and Postgres. With each database, you'll tackle a real-world data problem that highlights the concepts and features that make it shine. You'll explore the five data models employed by these databases-relational, key/value, columnar, document and graph-and which kinds of problems are best suited to each. You'll learn how MongoDB and CouchDB are strikingly different, and discover the Dynamo heritage at the heart of Riak. Make your applications faster with Redis and more connected with Neo4J. Use MapReduce to solve Big Data problems. Build clusters of servers using scalable services like Amazon's Elastic Compute Cloud (EC2). Discover the CAP theorem and its implications for your distributed data. Understand the tradeoffs between consistency and availability, and when you can use them to your advantage. Use multiple databases in concert to create a platform that's more than the sum of its parts, or find one that meets all your needs at once.Seven Databases in Seven Weeks will take you on a deep dive into each of the databases, their strengths and weaknesses, and how to choose the ones that fit your needs.What You Need: To get the most of of this book you'll have to follow along, and that means you'll need a *nix shell (Mac OSX or Linux preferred, Windows users will need Cygwin), and Java 6 (or greater) and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.
I Heart Logs: Event Data, Stream Processing, and Data Integration
Jay Kreps - 2014
Even though most engineers don't think much about them, this short book shows you why logs are worthy of your attention.Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses--data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models.Go ahead and take the plunge with logs; you're going love them.Learn how logs are used for programmatic access in databases and distributed systemsDiscover solutions to the huge data integration problem when more data of more varieties meet more systemsUnderstand why logs are at the heart of real-time stream processingLearn the role of a log in the internals of online data systemsExplore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark
Holden Karau - 2017
But if you haven't seen the performance improvements you expected, or still don't feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources.Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you'll also learn how to make it sing.With this book, you'll explore:How Spark SQL's new interfaces improve performance over SQL's RDD data structureThe choice between data joins in Core Spark and Spark SQLTechniques for getting the most out of standard RDD transformationsHow to work around performance issues in Spark's key/value pair paradigmWriting high-performance Spark code without Scala or the JVMHow to test for functionality and performance when applying suggested improvementsUsing Spark MLlib and Spark ML machine learning librariesSpark's Streaming components and external community packages
Copying and Pasting from Stack Overflow
Vinit Nayak - 2016
Mastering this art will not only make you the most desired developer in the market, but it will transform the craziest deadline into "Consider it done, Sir".
Cassandra: The Definitive Guide
Eben Hewitt - 2010
Cassandra: The Definitive Guide provides the technical details and practical examples you need to assess this database management system and put it to work in a production environment.Author Eben Hewitt demonstrates the advantages of Cassandra's nonrelational design, and pays special attention to data modeling. If you're a developer, DBA, application architect, or manager looking to solve a database scaling issue or future-proof your application, this guide shows you how to harness Cassandra's speed and flexibility.Understand the tenets of Cassandra's column-oriented structureLearn how to write, update, and read Cassandra dataDiscover how to add or remove nodes from the cluster as your application requiresExamine a working application that translates from a relational model to Cassandra's data modelUse examples for writing clients in Java, Python, and C#Use the JMX interface to monitor a cluster's usage, memory patterns, and moreTune memory settings, data storage, and caching for better performance
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.