Discrete Mathematical Structures with Applications to Computer Science


Jean-Paul Tremblay - 1975
    

The Calendar


David Ewing Duncan - 1998
    The year 2000 is alternatively the year 2544 (Buddhist), 6236 (Ancient Egyptian), 5761 (Jewish) or simply the Year of the Dragon (Chinese). The story of the creation of the Western calendar, which is related in this book, is a story of emperors and popes, mathematicians and monks, and the growth of scientific calculation to the point where, bizarrely, our measurement of time by atomic pulses is now more accurate than time itself: the Earth is an elderly lady and slightly eccentric - she loses half a second a century. Days have been invented (Julius Caesar needed an extra 80 days in 46BC), lost (Pope Gregory XIII ditched ten days in 1582) and moved (because Julius Caesar had 31 in his month, Augustus determined that he should have the same, so he pinched one from February).

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

A Mind for Numbers: How to Excel at Math and Science (Even If You Flunked Algebra)


Barbara Oakley - 2014
    Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life. In A Mind for Numbers, Dr. Oakley lets us in on the secrets to effectively learning math and science—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn math. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. A Mind for Numbers shows us that we all have what it takes to excel in math, and learning it is not as painful as some might think!

Math on Trial: How Numbers Get Used and Abused in the Courtroom


Leila Schneps - 2013
    Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.

Elementary Analysis: The Theory of Calculus


Kenneth A. Ross - 1980
    It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus


Michael Spivak - 1965
    The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

Using Econometrics: A Practical Guide


A.H. Studenmund - 1987
    "Using Econometrics: A Practical Guide "provides readers with a practical introduction that combines single-equation linear regression analysis with real-world examples and exercises. This text also avoids complex matrix algebra and calculus, making it an ideal text for beginners. New problem sets and added support make "Using Econometrics" modern and easier to use.

Emotional Poverty in all demographics


Ruby K. Payne - 2018
    

String, Straightedge, and Shadow: The Story of Geometry


Julia E. Diggins - 1965
    Julia Diggins masterfully recreates the atmosphere of ancient times, when men, using three simple tools, the string, the straightedge, and the shadow, discovered the basic principles and constructions of elementary geometry. Her book reveals how these discoveries related to the early civilizations of Mesopotamia, Egypt, and Greece.The fabric of the story is woven out of archeological and historical records and legends about the major men of mathematics. By reconstructing the events as they might have happened, Diggins enables the attentive reader to easily follow the pattern of reasoning that leads to an ingenious proof of the Pythagorean theorem, an appreciation of the significance of the Golden Mean in art and architecture, and the construction of the five regular solids.Out of print for 34 years, Julia Diggins' classic book is back and is a must-read for middle school students or for parents helping their children through their first geometry course. You will be fascinated with the graphic illustrations and written depiction of how the knowledge and wisdom of so many cultures helped shape our civilization today. This book is popular with teachers and parents who use Jamie York's Making Math Meaningful curriculum books.

Math Riddles For Smart Kids: Math Riddles and Brain Teasers that Kids and Families will Love


M. Prefontaine - 2017
    It is a collection of 150 brain teasing math riddles and puzzles. Their purpose is to make children think and stretch the mind. They are designed to test logic, lateral thinking as well as memory and to engage the brain in seeing patterns and connections between different things and circumstances. They are laid out in three chapters which get more difficult as you go through the book, in the author’s opinion at least. The answers are at the back of the book if all else fails. These are more difficult riddles and are designed to be attempted by children from 10 years onwards, as well as participation from the rest of the family. Tags: Riddles and brain teasers, riddles and trick questions, riddles book, riddles book for kids, riddles for kids, riddles for kids aged 9-12, riddles and puzzles, jokes and riddles, jokes book, jokes book for kids, jokes children, jokes for kids, jokes kids, puzzle book

Things to Make and Do in the Fourth Dimension


Matt Parker - 2014
    This book can be cut, drawn in, folded into shapes and will even take you to the fourth dimension. So join stand-up mathematician Matt Parker on a journey through narcissistic numbers, optimal dating algorithms, at least two different kinds of infinity and more.

Group Theory in the Bedroom, and Other Mathematical Diversions


Brian Hayes - 2008
    (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

The History of the Calculus and Its Conceptual Development


Carl B. Boyer - 1959
    Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.