Book picks similar to
Principles of Artificial Intelligence and Expert Systems Development by David W. Rolston
artificial-intelligence
computer-science
technical
Cybernetics: or the Control and Communication in the Animal and the Machine
Norbert Wiener - 1948
It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review
Pro Django
Marty Alchin - 2008
Learn how to leverage the Django web framework to its full potential in this advanced tutorial and reference. Endorsed by Django, Pro Django more or less picks up where The Definitive Guide to Django left off and examines in greater detail the unusual and complex problems that Python web application developers can face and how to solve them.Provides in-depth information about advanced tools and techniques available in every Django installation Runs the gamut from the theory of Django's internal operations to actual code that solves real-world problems for high-volume environments Goes above and beyond other books, leaving the basics behind Shows how Django can do things even its core developers never dreamed possible
Pro C# 3.0 and the .NET 3.5 Framework (Pro)
Andrew Troelsen - 2007
Since that time, this text has been revised, tweaked, and enhanced to account for the changes found within each release of the .NET platform (1.1, 2.0, 3.0 and now 3.5)..NET 3.0 was more of an augmentative release, essentially providing three new APIs: Windows Presentation Foundation (WPF), Windows Communication Foundation (WCF) and Windows Workflow Foundation (WF). As you would expect, coverage of the "W's" has been expanded a great deal in this version of the book from the previous Special Edition text.Unlike .NET 3.0, .NET 3.5 provides dozens of C# language features and .NET APIs. This edition of the book will walk you through all of this material using the same readable approach as was found in previous editions. Rest assured, you'll find detailed coverage of Language Integrated Query (LINQ), the C# 2008 language changes (automatic properties, extension methods, anonymous types, etc.) and the numerous bells and whistles of Visual Studio 2008. What you'll learn Everything you need to knowget up to speed with C# 2008 quickly and efficiently. Discover all the new .NET 3.5 featuresLanguage Integrated Query, anonymous types, extension methods, automatic properties, and more. Get a professional footholdtargeted to appeal to experienced software professionals, this book gives you the facts you need the way you need to see them. A rock-solid foundationfocuses on everything you need to be a successful .NET 3.5 programmer, not just the new features. Get comfortable with all the core aspects of the platform including assemblies, remoting, Windows Forms, Web Forms, ADO.NET, XML web services, and much more. Who this book is forIf you're checking out this book for the first time, understand that it targets experienced software professionals and/or students of computer science (so please don't expect three chapters devoted to "for" loops). The mission of this text is to provide you with a rock-solid foundation to the C# 2008 programming language and the core aspects of the .NET platform (object-oriented programming, assemblies, file IO, Windows Forms/WPF, ASP.NET, ADO.NET, WCF, WF, etc.). Once you digest the information presented in these 33 chapters, you'll be in a perfect position to apply this knowledge to your specific programming assignments, and you'll be well equipped to explore the .NET universe on your own terms. "
React Design Patterns and Best Practices
Michele Bertoli - 2017
What You Will Learn - Write clean and maintainable code - Create reusable components applying consolidated techniques - Use React effectively in the browser and node - Choose the right styling approach according to the needs of the applications - Use server-side rendering to make applications load faster - Build high-performing applications by optimizing components In Detail Taking a complete journey through the most valuable design patterns in React, this book demonstrates how to apply design patterns and best practices in real-life situations, whether that's for new or already existing projects. It will help you to make your applications more flexible, perform better, and easier to maintain - giving your workflow a huge boost when it comes to speed without reducing quality. We'll begin by understanding the internals of React before gradually moving on to writing clean and maintainable code. We'll build components that are reusable across the application, structure applications, and create forms that actually work. Then we'll style React components and optimize them to make applications faster and more responsive. Finally, we'll write tests effectively and you'll learn how to contribute to React and its ecosystem. By the end of the book, you'll be saved from a lot of trial and error and developmental headaches, and you will be on the road to becoming a React expert. Style and approach The design patterns in the book are explained using real-world, step-by-step examples. For each design pattern, there are hints about when to use it and when to look for something more suitable. This book can also be used as a practical guide, showing you how to leverage design patterns.
Grokking Deep Learning
Andrew W. Trask - 2017
Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.
Frontend Architecture for Design Systems: A Modern Blueprint for Scalable and Sustainable Websites
Micah Godbolt - 2015
This practical book takes experienced web developers through the new discipline of frontend architecture, including the latest tools, standards, and best practices that have elevated frontend web development to an entirely new level.Using real-world examples, case studies, and practical tips and tricks throughout, author Micah Godbolt introduces you to the four pillars of frontend architecture. He also provides compelling arguments for developers who want to embrace the mantle of frontend architect and fight to make it a first-class citizen in their next project.The four pillars include:Code: how to approach the HTML, CSS, and JavaScript of a design systemProcess: tools and processes for creating an efficient and error-proof workflowTesting: creating a stable foundation on which to build your siteDocumentation: tools for writing documentation while the work is in progress
Digital Evidence and Computer Crime: Forensic Science, Computers and the Internet
Eoghan Casey - 1999
Though an increasing number of criminals are using computers and computer networks, few investigators are well-versed in the evidentiary, technical, and legal issues related to digital evidence. As a result, digital evidence is often overlooked, collected incorrectly, and analyzed ineffectively. The aim of this hands-on resource is to educate students and professionals in the law enforcement, forensic science, computer security, and legal communities about digital evidence and computer crime. This work explains how computers and networks function, how they can be involved in crimes, and how they can be used as a source of evidence. As well as gaining a practical understanding of how computers and networks function and how they can be used as evidence of a crime, readers will learn about relevant legal issues and will be introduced to deductive criminal profiling, a systematic approach to focusing an investigation and understanding criminal motivations. Readers will receive access to the author's accompanying Web site which contains simulated cases that integrate many of the topics covered in the text. Frequently updated, these cases teaching individuals about: • Components of computer networks • Use of computer networks in an investigation • Abuse of computer networks • Privacy and security issues on computer networks • The law as it applies to computer networks• Provides a thorough explanation of how computers and networks function, how they can be involved in crimes, and how they can be used as a source of evidence • Offers readers information about relevant legal issues • Features coverage of the abuse of computer networks and privacy and security issues on computer networks• Free unlimited access to author's Web site which includes numerous and frequently updated case examples
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
Data Structures and Algorithms in Python
Michael T. Goodrich - 2012
Data Structures and Algorithms in Python
is the first mainstream object-oriented book available for the Python data structures course. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.
Probabilistic Robotics
Sebastian Thrun - 2005
Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
Data Structures Using C and C++
Yedidyah Langsam - 1995
Covers the C++ language, featuring a wealth of tested and debugged working programs in C and C++. Explains and analyzes algorithms -- showing step- by-step solutions to real problems. Presents algorithms as intermediaries between English language descriptions and C programs. Covers classes in C++, including function members, inheritance and object orientation, an example of implementing abstract data types in C++, as well as polymorphism.
R Packages
Hadley Wickham - 2015
This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author Hadley Wickham’s package development philosophy. In the process, you’ll work with devtools, roxygen, and testthat, a set of R packages that automate common development tasks. Devtools encapsulates best practices that Hadley has learned from years of working with this programming language.
Ideal for developers, data scientists, and programmers with various backgrounds, this book starts you with the basics and shows you how to improve your package writing over time. You’ll learn to focus on what you want your package to do, rather than think about package structure.
Learn about the most useful components of an R package, including vignettes and unit tests
Automate anything you can, taking advantage of the years of development experience embodied in devtools
Get tips on good style, such as organizing functions into files
Streamline your development process with devtools
Learn the best way to submit your package to the Comprehensive R Archive Network (CRAN)
Learn from a well-respected member of the R community who created 30 R packages, including ggplot2, dplyr, and tidyr
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Beginning PHP and MySQL 5: From Novice to Professional
W. Jason Gilmore - 2004
Essentially three books in one: provides thorough introductions to the PHP language and the MySQL database, and shows you how these two technologies can be effectively integrated to build powerful websites. Provides over 500 code examples, including real-world tasks such as creating an auto-login feature, sending HTML-formatted e-mail, testing password guessability, and uploading files via a web interface. Updated for MySQL 5, includes new chapters introducing triggers, stored procedures, and views.
Advances in Financial Machine Learning
Marcos López de Prado - 2018
Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.