Introduction to Information Retrieval


Christopher D. Manning - 2008
    Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Programming Groovy


Venkat Subramaniam - 2008
    But recently, the industry has turned to dynamic languages for increased productivity and speed to market.Groovy is one of a new breed of dynamic languages that run on the Java platform. You can use these new languages on the JVM and intermix them with your existing Java code. You can leverage your Java investments while benefiting from advanced features including true Closures, Meta Programming, the ability to create internal DSLs, and a higher level of abstraction.If you're an experienced Java developer, Programming Groovy will help you learn the necessary fundamentals of programming in Groovy. You'll see how to use Groovy to do advanced programming including using Meta Programming, Builders, Unit Testing with Mock objects, processing XML, working with Databases and creating your own Domain-Specific Languages (DSLs).

The Algorithm Design Manual


Steven S. Skiena - 1997
    Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.

Modern Information Retrieval


Ricardo Baeza-Yates - 1999
    The timely provision of relevant information with minimal 'noise' is critical to modern society and this is what information retrieval (IR) is all about. It is a dynamic subject, with current changes driven by the expansion of the World Wide Web, the advent of modern and inexpensive graphical user interfaces and the development of reliable and low-cost mass storage devices. Modern Information Retrieval discusses all these changes in great detail and can be used for a first course on IR as well as graduate courses on the topic.The organization of the book, which includes a comprehensive glossary, allows the reader to either obtain a broad overview or detailed knowledge of all the key topics in modern IR. The heart of the book is the nine chapters written by Baeza-Yates and Ribeiro-Neto, two leading exponents in the field. For those wishing to delve deeper into key areas there are further state-of-the-art ch

Service-Oriented Design with Ruby and Rails


Paul Dix - 2010
    Today, Rails developers and architects need better ways to interface with legacy systems, move into the cloud, and scale to handle higher volumes and greater complexity. In Service-Oriented Design with Ruby and Rails Paul Dix introduces a powerful, services-based design approach geared toward overcoming all these challenges. Using Dix's techniques, readers can leverage the full benefits of both Ruby and Rails, while overcoming the difficulties of working with larger codebases and teams. Dix demonstrates how to integrate multiple components within an enterprise application stack; create services that can easily grow and connect; and design systems that are easier to maintain and upgrade. Key concepts are explained with detailed Ruby code built using open source libraries such as ActiveRecord, Sinatra, Nokogiri, and Typhoeus. The book concludes with coverage of security, scaling, messaging, and interfacing with third-party services. Service-Oriented Design with Ruby and Rails will help you Build highly scalable, Ruby-based service architectures that operate smoothly in the cloud or with legacy systems Scale Rails systems to handle more requests, larger development teams, and more complex code bases Master new best practices for designing and creating services in Ruby Use Ruby to glue together services written in any language Use Ruby libraries to build and consume RESTful Web services Use Ruby JSON parsers to quickly represent resources from HTTP services Write lightweight, well-designed API wrappers around internal or external services Discover powerful non-Rails frameworks that simplify Ruby service implementation Implement standards-based enterprise messaging with Advanced Message Queuing Protocol (AMQP) Optimize performance with load balancing and caching Provide for security and authentication

CSS: The Definitive Guide


Eric A. Meyer - 2000
    Updated to cover Internet Explorer 7, Microsoft's vastly improved browser, this new edition includes content on positioning, lists and generated content, table layout, user interface, paged media, and more.Simply put, Cascading Style Sheets (CSS) is a way to separate a document's structure from its presentation. The benefits of this can be quite profound: CSS allows a much richer document appearance than HTML and also saves time -- you can create or change the appearance of an entire document in just one place; and its compact file size makes web pages load quickly.CSS: The Definitive Guide, 3rd Edition, provides you with a comprehensive guide to CSS implementation, along with a thorough review of all aspects of CSS 2.1. Updated to cover Internet Explorer 7, Microsoft's vastly improved browser, this new edition includes content on positioning, lists and generated content, table layout, user interface, paged media, and more. Author Eric Meyer tackles the subject with passion, exploring in detail each individual CSS property and how it interacts with other properties. You'll not only learn how to avoid common mistakes in interpretation, you also will benefit from the depth and breadth of his experience and his clear and honest style. This is the complete sourcebook on CSS.The 3rd edition contains:Updates to reflect changes in the latest draft version of CSS 2.1Browser notes updated to reflect changes between IE6 and IE7Advanced selectors supported in IE7 and other major browsers includedA new round of technical edits by a fresh set of editorsClarifications and corrected errata, including updated URLs ofreferenced online resources

Think Stats


Allen B. Downey - 2011
    This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data

Programming Pearls


Jon L. Bentley - 1986
    Jon has done a wonderful job of updating the material. I am very impressed at how fresh the new examples seem." - Steve McConnell, author, Code CompleteWhen programmers list their favorite books, Jon Bentley's collection of programming pearls is commonly included among the classics. Just as natural pearls grow from grains of sand that irritate oysters, programming pearls have grown from real problems that have irritated real programmers. With origins beyond solid engineering, in the realm of insight and creativity, Bentley's pearls offer unique and clever solutions to those nagging problems. Illustrated by programs designed as much for fun as for instruction, the book is filled with lucid and witty descriptions of practical programming techniques and fundamental design principles. It is not at all surprising that Programming Pearls has been so highly valued by programmers at every level of experience. In this revision, the first in 14 years, Bentley has substantially updated his essays to reflect current programming methods and environments. In addition, there are three new essays on (1) testing, debugging, and timing; (2) set representations; and (3) string problems. All the original programs have been rewritten, and an equal amount of new code has been generated. Implementations of all the programs, in C or C++, are now available on the Web.What remains the same in this new edition is Bentley's focus on the hard core of programming problems and his delivery of workable solutions to those problems. Whether you are new to Bentley's classic or are revisiting his work for some fresh insight, this book is sure to make your own list of favorites.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Joe Celko's SQL for Smarties: Advanced SQL Programming


Joe Celko - 1995
    Now, 10 years later and in the third edition, this classic still reigns supreme as the book written by an SQL master that teaches future SQL masters. These are not just tips and techniques; Joe also offers the best solutions to old and new challenges and conveys the way you need to think in order to get the most out of SQL programming efforts for both correctness and performance.In the third edition, Joe features new examples and updates to SQL-99, expanded sections of Query techniques, and a new section on schema design, with the same war-story teaching style that made the first and second editions of this book classics.